
SPECTRUM BROADCAST STRUCTURES FOR DISCRETE AND
CONTINUOUS VARIABLES IN OPEN QUANTUM SYSTEMS

by

Alberto Acevedo

Copyright ©Alberto Acevedo 2023

A Dissertation Submitted to the Faculty of the

GRADUATE INTERDISCIPLINARY PROGRAM IN APPLIED
MATHEMATICS

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2023



2 

 

 

 

THE UNIVERSITY OF ARIZONA 

GRADUATE COLLEGE 

 

As members of the Dissertation Committee, we certify that we have read the dissertation 

prepared by:            

titled: 

 

 

and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of 

Doctor of Philosophy. 

 

 

                                _________________________________________________________________ Date: ____________ 

  

  

                                _________________________________________________________________ Date: ____________ 

  

  

                                _________________________________________________________________ Date: ____________ 

  

  

                                _________________________________________________________________ Date: ____________ 

 

                                 

 

Final approval and acceptance of this dissertation is contingent upon the candidate’s submission 

of the final copies of the dissertation to the Graduate College.   

 

We hereby certify that we have read this dissertation prepared under our direction and 

recommend that it be accepted as fulfilling the dissertation requirement. 

 

 

 

 

                                _________________________________________________________________ Date: ____________ 

  

  

  

  

                                _________________________________________________________________ Date: ____________ 

  

  

Alberto Acevedo

Jaroslaw Korbicz (Nov 8, 2023 22:49 GMT+1)

Jaroslaw Korbicz (Nov 8, 2023 22:49 GMT+1)

Jaroslaw Korbicz
Center For Theoretical Physics, Polish Academy Of Sciences

Nov 8, 2023

Nov 8, 2023
Jaroslaw Korbicz

Jan Wehr (Nov 8, 2023 19:59 MST)
Jan Wehr

Jan Wehr (Nov 8, 2023 19:59 MST)
Jan Wehr

Jan Wehr
Jan Wehr

Nov 8, 2023

Nov 8, 2023

Jan Wehr

Moysey Brio (Nov 9, 2023 10:38 PST) Nov 9, 2023
Moysey Brio

Charles A. Stafford (Nov 13, 2023 19:18 MST) Nov 13, 2023
Charles A. Stafford

2



Acknowledgments

I would like to first and foremost thank my advisor Dr.Janek Wehr, for his guidance,

support, and attention to detail. I would secondly like to thank my co-advisor Jarek

Korbicz for creating the theory of Spectrum Broadcast Structures. I would also like to

thank the CSUSB professors who inspired and motivated me to pursue mathematics; in

particular Dr.Lo, Dr.Dunn, Dr.Ventura, Dr.Renteln, Dr.Kolehmainen, and Dr. Trapp. I

could not have become a mathematician without their very important initial push. A

special thanks goes to Dr. Van Huele from BYU for fomenting my interest in all that is

Quantum. Next, I would like to thank my old friends Timothy Martinez and Nolberto

Rezola Pelaez. Thank you Nolberto for getting me interested in mathematics; without

your influence, I would have never enrolled in a mathematics program to begin with.

Thank you Timothy for being a constant artistic inspiration, and for continuing to skate

with me. Timothy, Nolberto, I have always used our friendship as a source of motivation.

Finally, I would like to thank the good friends I made at the UofA; amongst them Brian

Bollen and Ruby Abrams. Brian Bollen, for teaching me how to stand up for myself, for

treating me like a brother, and for introducing me to many interesting musical artists

(including cranky cosmos [sic]); I hope that you and I can return to Baja California

someday. Ruby Abrams, for the roller-coaster ride our times together in Tucson have

been; as neighbors, as office mates, as classmates, and as great friends. I still remember

our first year in ENR2 and all of those late nights finishing homework. I felt like you and

I were Vegeta and Goku from Dragon Ball Z and the UofA was our hyperbolic time

chamber, and the Qualls were Cell.

3



Dedication

To my family...

To my brother David, for putting me on the path.

To my brother Danny, for reminding me to get off the path once in a while.

To my wife Cherie, for walking the path with me.

And most importantly...

To my mother, for making the path possible.

4



Contents

Abstract 8

Introduction 10

Chapter 1 Open Quantum Systems 13

1.1 Closed vs Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Unitary Evolution For Finite Dimensional Systems . . . . . . . . . . . . . . . . . . . . 14

1.3 Unitary Evolution For Infinite Dimensional Systems . . . . . . . . . . . . . . . . . . . 16

1.3.1 The Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Trace for the Infinite-Dimensional H Case . . . . . . . . . . . . . . . . . . . . 25

1.4 Open Quantum Systems and the Partial Trace . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Environmentally Induced Non-Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Physical Examples of Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . 32

1.6.1 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.2 Collisional Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.3 Multipartite Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 2 Quantum Maps, Distance Measures, and Inequalities 45

2.1 Quantum Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Quantum Map Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Phase Kick Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.2 Colisional Decoherence as a Quantum Semigroup . . . . . . . . . . . . . . . . . 50

2.2.3 POVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.4 Weak Measurement as an Example of POVM Measurement . . . . . . . . . . . 52

2.3 Quantifying Disturbance/Noise with the Trace Distance . . . . . . . . . . . . . . . . . 53

2.3.1 Contractivity of Quantum Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5



2.3.2 Disturbance Due to a Quantum Map . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 3 Asymptotic QSD for Countable and Uncountable Mixtures 58

3.1 PVM Quantum State Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Some Useful Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Generalizing the Knill-Barnum Bound . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Unitarily Related Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 More Unitarily Related Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Quadrature Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Unitarily Related Countable Mixtures. The case for Coherent States . . . . . . 74

3.4.3 Unitarily Related Countable Mixtures of Arbitrary Displaced Pure Initial States 75

3.5 Countable Mixtures of Unitarily Related Families . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Spectral Decomposition and Spectral Measures . . . . . . . . . . . . . . . . . . 78

3.6 Unitarily Related Mixtures of Finite Mixtures . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Uncountable Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7.1 UQSD Using a Particular PVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.8 What if the B̂ is Finite-Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 4 SBS for Discrete Variables 91

4.1 Work by Jarek et all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Bounding the Super Quantum State Discrimination Problem (SQSD) . . . . . . . . . 94

4.3 Dynamical Monitoring for Discrete Variables . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Quantum-Measurement Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.2 Partial Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Monitoring the Process of System Information Broadcasting . . . . . . . . . . . . . . . 100

4.4.1 A New Bound for the Trace Distance of a Multipartite State and an Approxi-

mating SBS State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Further Bounds for Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Case Where Dk
s,t Are Determinants of Circulant Matrices . . . . . . . . . . . . . . . . 108

4.7 Mixed Environmental States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 How General May the B̂k Be? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 5 SBS for Continuous Variables 114

6



5.1 Problem With Definition 4.1.2 When Introducing Continuous Variables . . . . . . . . 119

5.2 Partitioning (5.11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Estimating the "Off-diagonal Terms" (5.26) . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 Bounds of the Kupsch Kind [46] . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.2 Another Way to Estimate the Off-diagonal Terms (5.26) . . . . . . . . . . . . . 125

5.4 Estimating the Diagonal Terms (5.25) . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.1 How General Can X̂ Be? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Concluding Remarks and Future Work 140

Appendix A: Notation 143

Appendix B: Gap in Corollary 1 of [40] 144

Bibliography 163

7



Abstract

We develop tools apt for the quantitative study of the dynamical emergence of Spectral Broadcast

Structures (SBS) due to environmental monitoring. In the past, efforts have been made to bound

the proximity of an arbitrary state undergoing non-unitary evolution to the nearest SBS state (in the

trace distance sense). This dissertation presents the first of such bounds which has been substantiated

as well as provides sufficient conditions under which a broad family of multipartite states converge to

SBS states asymptotically in time. We also develop an SBS theory for continuous variables (SBSCV);

i.e. the dynamics will now be generated by self-adjoint operators with purely continuous spectrum.

We create a theory for SBSCV that parallels that of SBS and develop tools for its quantitative study.
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Too often the mathematicians think it’s physics, and the physicists think it’s

mathematics.

-Barry Simon.
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Introduction

The emergence of the classical world, with its objective properties, from the quantum world has

been a conundrum since the genesis of quantum theory [31][18][12]. If quantum mechanics is indeed

a more fundamental theory of nature than classical mechanics (Newtonian mechanics), then why can

we not see matter behaving quantumly in our everyday lives? The superposition principle says that

states of matter may in a sense be delocalized [6] [69]. But we never see such delocalized states of

matter in our quotidian life. So what happens to the quantumness of matter? Where does it all

go? More importantly, why is the world around us classically objective (i.e. when multiple observers

measure the same system they observe the same state of said system) in spite of it having to obey the

laws of quantum mechanics which would appear to be highly non-objective? In this dissertation we

study a relatively novel theory, known as the theory of Spectrum Broadcast Structures (SBS) theory

[38] [39] [40] [53], developed for the purpose of taking on such questions. The theory of SBS being

rather young (about 10 years old), it has yet to reach mathematical maturity. The bulk of the original

work presented in this dissertation will consist of tools/techniques for the quantitative study of these

so-called SBS states and their dynamical properties. We will also generalize the existing SBS theory

to a new theory that includes states and dynamics hitherto not studied with mathematical rigor in

the literature, namely the theory of SBS for continuous variables.

This dissertation contains four main parts. The first consists of a detailed synopsis of key concepts

and tools from the theories of Quantum Open Systems, Quantum Information Theory and Operator

Theory that will be essential for the development of the main results of this work. Chapters 1 and 2

will be consecrated to the introduction of all of these concepts and tools. In Chapter 1 we introduce

the concepts of quantum open systems, quantum information theory, and operator Theory; focusing

on Quantum Maps, distance measures, and relevant operator inequalities in Chapter 2.

10



The second part (Chapter 3) introduces the optimization problem of Quantum State Discrim-

ination (QSD) [22][23][70][61][25][27][65], an active field of research within the theory of quantum

information whose focus is estimating the probability of measuring the correct state of a quantum

system when said system is in a mixed state. This section will serve us in future chapters since tech-

niques and concepts from QSD will play an important role in Chapters 4 and 5. In Chapter 3 we

introduce some of the main results of QSD for countable mixtures and introduce the concept of QSD

for uncountable mixtures. We study dynamically evolving mixtures, both uncountable and countable,

and deduce novel results regarding their QSD problems in the asymptotic regime (large-time dynam-

ics); see Propositions 3.5.1 and 3.7.1, Theorem 3.6.2, and Corollary3.6.1.

In Chapter 4 (Part 3 of this thesis) we focus on the theory of Spectrum Broadcast Structures

(SBS) [38] [39] [40] [53]. Informally, a SBS state is a special type of quantum state that exhibits

classical-objectivity properties. As mentioned, these states are used to study the emergence of clas-

sicality from the quantum, a theme that is ubiquitous in the field of quantum-to-classical transitions

[12]. Interacting systems such as a multipartite network of a system and multiple observers (observers

of the system) will always exhibit objectivity in the classical regime; i.e. all observers will find the

system to be in the same state. One would expect an analog of such a notion of objectivity to exist

in the quantum regime. In Chapter 4 it will be argued that in order to prove the latter is indeed the

case, quantum analogs of the networks hitherto discussed (i.e. one system with multiple observers.)

will necessarily have to converge dynamically to an SBS state (4.1.2. We build tools apt for studying

the dynamical convergence of certain multipartite quantum states to an SBS state (Theorems 4.2.2

and (4.4.1)) and discuss sufficient conditions for a broad family of multi-partite states to converge to

an SBS state (see Corollary 4.8.1)

Chapter 5 constitutes the fourth and final part of this dissertation. In this chapter, we generalize

the theory of SBS to include the case where the systems in question are taken to live in an infinite

dimensional Hilbert space, and the dynamics are assumed to be generated by self-adjoint operators

with continuous spectrum (what we will call the Spectrum Broad Cast Structures of continuous

variables theory (SBSCV)). Such cases are not supported by the already existent theory of SBS which

shall be discussed in Chapter 4 and the novel results presented therein. The leap in difficulty from SBS

11



to SBSCV is considerable; we, therefore, consecrate a lot of the space in Chapter 5 to the formidable

task of creating the tools necessary for the proper analysis of the emergence of SBSCV states (see

5.4.1 5.3.1 5.3.1).
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Chapter 1

Open Quantum Systems

1.1 Closed vs Open

The central focus of introductory quantum mechanics is the study of closed quantum systems.
Although the closedness of any physical system is an idealization, and in reality no physical is ever
closed except perhaps for the entire universe [1], assuming closedness may nevertheless lead to useful
models that shed light on fundamental properties of nature. The Energy spectrum of the hydrogen
atom, for example, may be deduced by considering the hydrogen to be a closed system [6]. The
equation of motion governing closed quantum systems is the Schrödinger equation iℏ∂t

∣∣ψt〉 = Ĥ
∣∣ψt〉,

to be discussed in detail below. Schrödinger’s equation (SE) generates unitary evolution, forgoing any
description of dissipative and decoherence effects [12]; processes where energy, information, and other
agents of "quantumness" are not preserved. Decoherence and dissipation are nevertheless inevitable!
A model that does not account for such a phenomenon can therefore not be complete.

One of the conundrums out-flowing from the modeling of quantum scale phenomena with the SE is
the seeming non-physical nature of its solutions, in the sense that linear combinations of measurable
properties of an observable are viable solutions to SE. This is of course the superposition principle of
quantum mechanics [6], something whose interpretation foments contention amongst scientists till this
day. The superposition principle [6] [10] is arguably the needy-greedy when one discusses quantum
mechanical phenomenon, and indeed this is what is alluded to when the term "quantumness" is used
in this work. In everyday macroscale physical experiences, one does not carry out measurements that
result in more than one outcome, hence the dilemma.

The non-local description of nature emanating from early quantum theory was not met with a
favorable reception. In fact, quite the opposite, the immediate impulse of some of the great physi-
cists of the 20th century was to navigate around this apparent inconstancy of quantum theory and
our apparent reality. Consensus was more or less met but there was one question that still left the
physics community puzzled. This was the question of measurement, i.e. if quantum theory is cor-
rect then how is it the case that measurements always lead to definite outcomes? To answer this

13



question Niels Bohr annexed a supporting theory to the already-existent quantum theory. The idea
consisted of a model where upon being measured, a quantum system evolving unitarily via SE would
instantaneously collapse to a definite eigenstate of the observable being measured. This collapse was
assumed to occur with some probability distribution governing the "collapse"[9]. The latter take on
quantum theory became known as the Copenhagen interpretation [7]. Although various aspects of the
Copenhagen interpretation are criticizable, we will stop at one, namely the instantaneous aspect of
the collapse which is assumed. This is at odds with the nature of the time-continuous world we live in,
there must surely exist some time scale within which these "collapses" take place, leading one to guess
that the Copenhagen school of thought has missed something fundamental. It is now understood that
"collapse" or loss of quantumness, is not a phenomenon that occurs instantaneously. This loss of quan-
tumness is the study of the theory of decoherence [12] [18] and decoherence time scales which vary from
system to system [18] (pg 66) may be estimated via considering the more realistic setting where the
system in question, and the associated environment, are both treated as interacting quantum systems.

By considering a larger closed quantum system, which includes both the system of interest and
its environment, one may use SE as a starting point, and later compute the reduced dynamics of the
system. Ideally, we hope to obtain the unitary evolution for the total dynamics and deduce the local
dynamics of the system. However, as will be seen in what is to come, this is no easy venture. In this
chapter, we will give an overview of the mathematical theory for closed quantum systems, introduce
the theory of open quantum systems, and discuss applications to canonical decoherence models of
decoherence [18] [12].

1.2 Unitary Evolution For Finite Dimensional Systems

In quantum mechanics for closed quantum systems one is tasked with solving SE; we will express it
here with units of ℏ = 1.

i∂t
∣∣ψt〉 = Ĥ

∣∣ψt〉 (ℏ = 1) (1.1)

where the state
∣∣ψt〉 is a vector in some Hilbert space, call it ĤS , and Ĥ is a self-adjoint operator,

which we will call the Hamiltonian, acting in HS . For the cases where dim{HS} < ∞,
∣∣ψt〉 will

represent a column vector, making
〈
ψt
∣∣ :=

∣∣ψt〉† a row vector. The solution to equation 1.1 is

e−itĤ∣∣ψ0
〉

(1.2)

where
∣∣ψ0
〉

∈ HS (
〈
ψ0
∣∣ψ0
〉

= 1) is the initial state of the system. Invoking Stone’s theorem [3] we
know that the operator e−itĤ is a strongly continuous one-parameter semigroup acting in the Hilbert
space HS , with t being the parameter, and hence

〈
ψt
∣∣ψt〉 = 1 (∀t). However, the story does not end

there. We would like to understand the effect of the unitary operator Ût := e−itĤ upon acting on∣∣ψ0
〉
. One approach is to simply use the Taylor expansion of the exponential function ex.

e−itĤ =
∞∑
n=0

(−it)n
n! Ĥn (1.3)

14



However, this will require one to take arbitrarily large powers of the matrix Ĥ. Inevitably, there will
be some approximations involved since one can not take an infinite sum, and taking greater powers
of Ĥ becomes ever more costly. There are nevertheless cases where this path is fruitful; one of them
being when the operator norm ∥tĤ∥ is small. In such a case one can get away with truncating the
sum and keeping a minimal amount of terms. Or, the Hamiltonian could have small dimensions, in
which case computing powers are not too costly.

There is one case where the sum (1.3) is trivial to compute. This is when the matrix Ĥ is diagonal.
Assume that Ĥ is diagonal with respect to the orthonormal basis

{∣∣ϕn〉}n, then

Ĥ =
∑
n

λn
∣∣ϕn〉〈ϕn∣∣ (1.4)

and therefore
e−itĤ =

∞∑
n=0

(−it)n
n! Ĥn =

∞∑
n=0

(−it)n
n!

(∑
m

λm
∣∣ϕm〉〈ϕm∣∣)n = (1.5)

∞∑
n=0

(−it)n
n!

∑
m

λnm
∣∣ϕm〉〈ϕm∣∣ =

∑
m

∞∑
n=0

(−it)n
n! λnm

∣∣ϕm〉〈ϕm∣∣ = (1.6)

∞∑
n=0

(−it)n
n!

∑
m

λnm
∣∣ϕm〉〈ϕm∣∣ =

∑
m

e−itλm
∣∣ϕm〉〈ϕm∣∣. (1.7)

Assuming that the operator Ĥ is full rank, its eigenspace
{∣∣ϕn〉}n will span all of HS ; hence we

need only decompose any arbitrary vector
∣∣ψ0
〉

in HS with respect to the eigenbasis of Ĥ and then
calculate exactly the evolution of

∣∣ψ0
〉
. i.e.

Ût

∣∣ψ0
〉

= eitĤ
∑
n

αn
∣∣ϕn〉 =

∑
n

αne
itλn

∣∣ϕn〉, {αk :=
〈
ϕk
∣∣ψ0
〉
}k (1.8)

It is a basic result from linear algebra that any normal matrix Ĥ (Ĥ†Ĥ = ĤĤ†) is diagonalizable
[9] (section 2.1.7). Owing to the fact that self-adjoint matrices are also normal, we conclude that any
self-adjoint matrix Ĥ is also diagonalizable. Obtaining a diagonal representation, however, remains a
challenging problem. In this case we must solve the following vector equation.

Ĥ
∣∣ϕ〉 = λ

∣∣ϕ〉 (1.9)

which is only possible if the matrix Ĥ − λI is singular. From basic linear algebra, we know that
ensuring the matrix Ĥ − λI to be singular is equivalent to finding the roots of the characteristic
polynomial

det
(

Ĥ − λI
)

= 0. (1.10)

The hurdles are now that of computing a determinant, finding the roots of the resulting polynomial
in order to obtain the eigenvalues, and finding the associated eigenvectors. These three processes are
well understood theoretically; computationally they are costly and even intractable for large enough
dim{HS}. Although the equation (1.10) in general poses an ill-conditioned problem there are many
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algorithmic techniques designed for the computational estimation of the solutions to this equation [54].

We have of course omitted discussions on the slew of eigenvalue approximation techniques that
exist out there. Perhaps the most popular one amongst physicists being time-dependent perturbation
theory. Nevertheless, the discussion herein, in a sense, summarizes the mathematical aspects of
finite dimensional quantum theory for closed quantum systems. At a mathematical level, if we can
diagonalize the Hamiltonian of the system we are interested in, then we know just about everything. Of
course, anyone who has read more than the introductory chapters to a first-year quantum mechanics
course knows that even the simplest non-trivial Hilbert space C2, simple as it may be, affords a
framework that supports volumes of interesting physics[10] [6] [13] [9] [8]. Two-level systems are the
basis of quantum information and quantum computation theory after all[9], and two-level systems are
just the tip of the iceberg!

1.3 Unitary Evolution For Infinite Dimensional Systems

Let us now pass to the case where dim{HS} = ∞. Unless mentioned otherwise, we will constrain
ourselves to the Hilbert space L2(R) (square-integrable functions over the reals) for this section. In
quantum theory, observables are described with self-adjoint operators. The expectation value of some
arbitrary observable Ĥ for some system in the state

∣∣ψ〉 being
〈
Ĥ
〉
ψ

:=
〈
ψ
∣∣Ĥ∣∣ψ〉 :=

〈
ψ, Ĥψ

〉
;
∣∣ψ〉 now

represent square-integral functions ψ(x) and
〈
ψ
∣∣ their complex conjugate ψ∗(x). Physically speaking,

if the state of the system we are studying lives in L2(R), we are only going to concern ourselves with
states

∣∣ψ〉 that yield defined expectation values for all observables of the system. For the case of some
observable Ĥ acting L2(R), we hence know that

〈
Ĥ
〉
ψ

:=
∫
R
ψ∗(x)Ĥψ(x)dx (1.11)

is a well-defined quantity. If the operator Ĥ is bounded then we have nothing to worry about since〈
Ĥ
〉
ψ

≤
∥∥Ĥ
∥∥ < ∞, which follows from the result sup∥x∥=1∥⟨x, Âx⟩| = ∥Â∥, for a bounded and self-

adjoint Â, consult [21] chapter 8. For the case where the observable in question, Ĥ, is an unbounded
operator the latter will not be the case for all

∣∣ψ〉. However, the well-deifinedness (1.11) can be
guaranteed by restricting ourselves to

∣∣ψ〉 satisfying Ĥ
∣∣ψ〉 ∈ L2(R), i.e.

∫
R
∣∣Ĥψ(x)

∣∣2dx < ∞. This is
immediately clear by making use of the Cauchy-Schwarz inequality;

∫
R
ψ∗(x)Ĥψ(x)dx ≤

√∫
R

|ψ∗(x)|2dx

√∫
R

|Ĥψ(x)|2dx =

√∫
R

|Ĥψ(x)|2dx. (1.12)

Let us call the subset of
∣∣ψ〉 ∈ L2(R) satisfying Ĥ

∣∣ψ〉 ∈ L2(R) the domain of Ĥ, and name it
D
(
Ĥ
)

⊂ L2(R). In quantum theory, we are only concerned with Hamiltonians Ĥ having a domain
D
(
Ĥ
)

which is dense in the Hilbert space of interest; i.e. any state in the Hilbert space of interest
may be approximated by elements of D

(
Ĥ
)
. This is a point in which the mathematics for infinite-

dimensional quantum systems diverges from that of finite-dimensional systems. For physical systems
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living in a finite-dimensional Hilbert space, one need not worry about domain issues; the inner prod-
uct (1.12) in such a case will simply be a finite sum of finite values and will therefore be well-defined
regardless of the operator and vectors involved. Furthermore the domain of some observable Â in the
finite-dimensional case may always be treated as the entire Hilbert of interest.

Any operator Ĥ acting in L2(R) will have a domain D
(
Ĥ
)

and its adjoint Ĥ† will have its own
corresponding domain D

(
Ĥ†), D

(
Ĥ†) ⊂ L2(R) and D

(
Ĥ
)

⊂ L2(R). For an operator Ĥ in such a
setting to be self-adjoint it is a necessary and sufficient condition that D

(
Ĥ
)

= D
(
Ĥ†). Drawing a

comparison with the finite-dimensional case, notice that for the latter one need only check that the
matrix in question is equal to its complex transpose. Even at the level of identifying whether or not an
operator Ĥ, which we would like to use for the modeling of some observable, is self-adjoint, one is met
with a challenge far greater than just simple matrix manipulation. In the non-relativistic quantum
theory of closed quantum systems, the operators of interest have the following structure

Ĥ = Ĥ0 + V (X̂) (1.13)

where Ĥ0 := −
∑
k

1
2mk

∂2
xk

and X̂ := (x̂1, ..., x̂k, ..). Testing whether or not D
(
Ĥ
)

= D
(
Ĥ†) is of

course not a simple matter, but thanks to theorems such as the Kato-Rellich [4] the self-adjointness of
operators of the form (1.13) is fairly understood. When an operator of the form (1.13) is self-adjoint,
it is referred to as a Schrödinger operator [5].

Let us now look at a concrete example. We will consider what is perhaps the most famous
observables in quantum theory, namely P̂ := −i∂x (the momentum operator). We remind the reader
that the Hilbert space of interest shall be L2(R). In such a case it is easy to see that that there
exists

∣∣ψ〉 ∈ L2(R) such that −i∂xψ(x) /∈ L2(R). For example, let ψ(x) = sin(ex)
1+x2 . This function is

square-integrable since it is dominated by an L2(R) function 1
1+x2 , i.e. |ψ(x)| ≤ 1

1+x2 ∀x ∈ R (the
argument follows from application of the Dominated Convergence Theorem [2]). However, consider
the derivative of ψ(x).

∂xψ(x) = (1 + x2) cos(ex)ex − sin(ex)2x
(1 + x2)2 . (1.14)

For large x, |∂xψ(x)| ≈ ex

1+x2 ; a function which is clearly not in square-integrable. However, D(P̂) is
a dense subset of L2(R), which means that any physically relevant function living in L2(R) may be
approximated by functions in the domain of P̂. This will allows us to make sense of

〈
P̂
〉
ψ

for any
physically relevant

∣∣ψ〉.
Given a Hamiltonian Ĥ acting in an infinite dimensional Hilbert space, Schrödinger’s equation

(1.1) again has the solution e−itĤ
∣∣ψ0
〉
, with

∣∣ψ0
〉

the initial state. This time however, the opera-
tor Ĥ has domain restrictions which may be transmitted to the operator e−itĤ. Deffering nuances
regarding domains to the great expositions in [4] [3], the generalization of Stone’s theorem tells us
that the operator e−itĤ will again be a unitary operator governing the dynamics of any initial state∣∣ψ0
〉
. Here we are once again faced with the challenge of figuring out how the operator e−itĤ acts on

an arbitrary state
∣∣ψ0
〉
. Once again, one might be tempted to expand the operator e−itĤ using the
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Taylor series of ex. If we were to do this, even for a simple case of the Schrödinger operator (1.13), say
Ĥ = − 1

2m∂
2
x+V

(
X̂
)
, we would quickly encounter non-linear terms such as ∂2

xV
(
X̂
)
ψ0(x). These non-

linear terms would grow in complexity and we would have to compute an indefinite amount of them.
Also, given that the operations involved are derivatives and multiplication by functions, we would not
be able to simply take various powers of the operators showing up in the series, e.g.

{
∂2
x

}m{
V
(
X̂
)}n,

and store them in some computer program subroutine for computing the effect on an arbitrary
∣∣ψ0
〉
.

This is because the way differential operators act will be intrinsically dependent on the vector they
are acting on. We are worst off here than we were in the finite-dimensional case. Unless t is very
small and we can truncate the series, one must take a different approach.

To make progress in the matter of making sense of e−itĤ
∣∣ψ0
〉

for the case at hand, we need
a notion that generalizes the concept of an eigenvalue and eigenvector. This is the notion of the
spectrum of an operator denoted Spec

{
Ĥ
}

for some operator Ĥ[3] [4] [16] [8]. Given that we are
solely interested in self-adjoint operators, we will be narrowing our attention to the spectral theory
of self-adjoint operators. We warn the reader that our treatment will be a non-rigorous one. There
are four main kinds of infinite-dimensional self-adjoint operators that we shall be working with in this
thesis. Namely, those that are trace class, Hilbert-Schmidt, bounded and unbounded operators. Given
an infinite-dimensional Hilbert space H we will denote the corresponding spaces of bounded, trace
class, and Hilbert-Schmidt operators respectively as B

(
H
)
, S1

(
H
)

and S2
(
H
)
.

B
(
H
)

:=
{

Ĥ : H → H
∣∣∣ ∥Ĥ∥ < ∞

}
(1.15)

S2
(
H
)

:=
{

Ĥ : H → H
∣∣∣ √Tr{Ĥ†Ĥ

}
< ∞

}
(1.16)

S1
(
H
)

:=
{

Ĥ : H → H
∣∣∣ Tr{√Ĥ†Ĥ

}
< ∞

}
(1.17)

It is useful to note that
F
(
H
)

⊂ S1
(
H
)

⊂ S2
(
H
)

⊂ B
(
H
)

(1.18)

where F
(
H
)

are the finite rank matrices acting in H . Above, the map Tr{} is the trace of an op-
erator, which is equivalent to the sum of the eigenvalues of the operator being traced[16]. There
are two things that the attentive reader might have noticed. The first one is that there is no
mention of the case for unbounded operators in the list above. This is because, unlike the sets
B
(
H
)
,S2

(
H
)
,S1

(
H
)
, F
(
H
)

which are a special type of Banach space called a Banach algebra
[3], unbounded operators do not form an algebra, nor a linear space, because each is defined in its own
domain. The second thing one might have noticed is that there was no mention of compact operators.
Indeed the space of trace class operators as well as the space of Hilbert-Schmidt operators are families
of compact operators. However, we will seldom be needing the concept of a compact operator in any
greater generality than that of trace class and Hilbert-Schmidt operators.

Heuristically speaking, finding the spectrum of some self-adjoint operator in the infinite-dimensional
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case is paramount to finding objects
∣∣s〉 so that the relationship

Ĥ
∣∣s〉 = µs

∣∣s〉 (1.19)

holds. The problem here is that in this case the objects
∣∣s〉 may not be elements of the Hilbert space

in question. They may belong to the space of distributions for example. e.g. consider the position
operator X̂. This is an unbounded operator which may satisfy an equation akin to (1.19). Namely,

X̂
∣∣x〉 = x

∣∣x〉 (1.20)

where the objects
∣∣x〉 are Dirac delta distributions written in ket form, we will refer to such eigenstates

as generalized eigenstates; one might correctly guess that Spec
{

X̂
}

= R in this case. However, δ(x)
is not in L2(Ω) for any Ω ⊆ R, so it would seem that this relationship will not be too useful. However,
taking the physicist approach, one may write X̂ =

∫
R x
∣∣x〉〈x∣∣dx (Spectral Theorem [3]), and noticing

that X̂n =
∫
R x

n
∣∣x〉〈x∣∣dx one may therefore conclude that

e−itX̂ =
∫
R
e−itx∣∣x〉〈x∣∣dx (1.21)

Now, for an arbitrary
∣∣ψ〉 ∈ L2(R) we may operate with (1.21) to get

e−itX̂∣∣ψ〉 =
∫
R
e−itx∣∣x〉〈x∣∣ψ〉dx =

∫
R
ψ(x)e−itx∣∣x〉dx (1.22)

which is just the L2(R) function e−itxψ(x). But this is what we expected since e−itX̂ was evidently a
multiplication operator to begin with, and we can always write our sates as functions of x ∈ Spec

{
X̂}.

Another example from physics is the quantum simple harmonic oscillator (QSHO). Such a system is
described by the Schrödinger operator

Ĥ := 1
2m P̂2 + mω2

2 X̂2. (1.23)

Although quite innocuous-looking, such an operator does not lend itself to exponentiation right away.
One needs to find its spectrum and associated spectral decomposition akin to what we saw in (1.21).
To do this we must solve an equation of the form

( 1
2m P̂2 + mω2

2 X̂2)∣∣s〉 = µs
∣∣s〉. (1.24)

Forgetting for a moment that the solutions for (1.24) are amongst the most widely known in quantum
theory, one must admit that solving this is no more straightforward than solving a differential equation.
We were lucky in the case of X̂, where the spectrum was trivial to find. For the general case, some
clever methods must be devised; such is the case for the QSHO. Via clever manipulation of ladder
operators, it was discovered that Ĥ could be diagonalized with Hermite functions, also known as

19



number states,
∣∣n〉 with respective eigenvalues ω(n+ 1

2 ) [6] [45] [10]. Where

〈
x
∣∣n〉 := 1√

2n n!

(mω
π

)1/4
e− mωx2

2 Hn

(√
mωx

)
(Hermite Functions) (1.25)

Hn(x) = (−1)nex
2 dn

dxn
(
e−x2)

(Hermite Polynomials) (1.26)

With this in mind, we can now write

e
−it
(

1
2m P̂2+ mω2

2 X̂2
)

=
∞∑
n=0

e−itω(n+ 1
2 )∣∣n〉〈n∣∣. (1.27)

Let us compare (1.22) and (1.27). Both operators are diagonal in a sense, with respect to their
eigenvectors and generalized eigenvectors. We know exactly how (1.27) and (1.21) act on any given
vector in their respective domains. What differentiates these two operators is the type of spectrum
they have. While Spec

{
X̂
}

= R, we have Spec
{ 1

2m P̂2 + mω2

2 X̂2} =
{
ω(n + 1

2 )
}∞
n=0. The latter is

a set of isolated points while the former, R, is a connected set! These are cases of what is known
as absolutely continuous and point spectrum respectively. The spectrum of any self-adjoint operator
may be characterized by three subcategories.

Definition 1.3.1 (The Spectrum of an operator)

Let Ĥ be an arbitrary operator acting over some Hilbert space H ; the spectrum of said
operator is the union of following complimentary sets.

• point spectrum of Ĥ := Specpp
(
Ĥ
)

: The closure of the set of eigenvalues of Ĥ, i.e.
Specpp

(
Ĥ
)

is the set of eigenvalues of Ĥ (this is called the pure point spectrum [3]).

• continuous spectrum of Ĥ := Specc
(
Ĥ
)

: Consists of all scalars, λ that are not
eigenvalues but make the range of Ĥ − λI a proper dense subset of H .

• residual spectrum of Ĥ := Specr
(
Ĥ
)
: Ĥ − λI is injective but does not have dense

range.

It is important to note that all of the sets defined in Definition 1.3.1 are disjoint, whence the spec-
trum of an arbitrary operator Ĥ may expressed as Spec

(
Ĥ
)

= Specpp(Ĥ) ∪ Specc(Ĥ) ∪ Specr(Ĥ).
Note that for the case were Ĥ is self-adjoint Specr(Ĥ) is empty [3]. Hence, when for self-adjoint
Ĥ, Spec

(
Ĥ
)

= Specpp(Ĥ) ∪ Specc(Ĥ). There are indeed other ways to partition the spectrum of
a self-adjoint operator but we will stop at this for now, recommending to the interested reader the
discussion in chapter 9 of [4] for yet another partitioning of the spectrum using the notions of discrete
and essential spectrums. In Section 5.8 we will introduce yet another decomposition of the spectrum
that will involve two types of continuous spectrum, absolutely continuous and singular continuous.

Returning to the position operator X̂ and the QSHO 1
2m P̂2 + mω2

2 X̂2, note that for the latter case
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the equation ( 1
2m P̂2 + mω2

2 X̂2)|n〉 = ω(n+ 1
2
)∣∣n〉 (1.28)

is a bonafide solution to the eigenvalue problem since the states
∣∣n〉 are square-integrable functions.

Therefore it is clear that Specp
{ 1

2m P̂2 + mω2

2 X̂2} is not empty. Furthermore, we mentioned earlier
that Spec

{
X̂
}

= R, and we also mentioned that Spec
{

X̂
}

= Specc
{

X̂
}

. We will now shed light on
these claims.

First consider the operator X̂ − λI, we will not prove that the range of said operator is dense in
L2(R) but this can be shown. Let us act on some arbitrary

∣∣ψ〉 in the Hilbert space with X̂. The
result is

(
x − λ

)
ψ(x). We can always choose a ψ(x) ∈ L2(R) so that for a given ε > 0 we have

∥
(
x− λ

)
ψ(x)∥L2(R) ≤ ε, e.g. by letting ψ(x) ∈ {ϕn(x− λ)}n where ϕn(x− λ) is a delta sequence cen-

tered at λ we may pick an appropriate n that satisfies the desired bound ε > 0. This, of course, entails
that

〈
ψ
∣∣(X̂ − λI

)∣∣ψ〉 may be made arbitrarily small, which in turn implies that
〈
ψ|
(
X̂ − λI

)−1∣∣ψ〉
may be made arbitrarily large; making

(
X̂ − λI

)−1 an unbounded operator. i.e. even though X̂ has
no eigenvalues, it behaves quite singular in some sense. Now, using the fact that the range of X̂ − λI
is dense in L2(R) this operator is basically singular in the entire Hilbert space. Since the latter may
be argued for any λ, we conclude that Specc

{
X̂
}

= R. Furthermore, since self-adjoint-operators
have real spectrum we conclude that Spec

{
X̂
}

= Specc
{

X̂
}

. Given that both the position operator
and the QSHO operator are unbounded operators, one might have suspected some similarities in the
nature of their respective spectrum; yet nothing is further from the truth! As our analysis of the
position and QSHO operators exemplifies, spectrum type need not be correlated to operator type in
general. For the general setting of unbounded and bounded operators, the latter holds true; however,
for the more specialized case of trace class and Hibert-Schmidth operators, it turns out that they have
only point spectra [3].

Much more can be said about the spectrum of self-adjoint operators and finding the corresponding
eigenvectors/ generalized eigenvectors but we will stop here for now. The hope is that the reader gets
a sense of the complexity invoked when working with operators acting on infinite-dimensional Hilbert
spaces. Not only is finding the spectrum of a given Hamiltonian computationally more daunting in
such a case, but in general, it is also very difficult to categorize the spectrum such a Hamiltonian
might have. There exist plenty of results in the literature of Schrödinger operators whose aim is to
categorize these sorts of operators based on the spectral properties afforded by their potentials; the
interested reader on these matters may consult [4] for a phenomenal exposition on this subject.

1.3.1 The Density Operator

Let us take a step back and rewrite the Schrödinger equation in a form that will be more practical
for the study of open quantum systems. Starting with a Hilbert space H and some Hamiltonian Ĥ
acting in H , we have been interested in the equation (1.1) i∂t

∣∣ψt〉 = Ĥ
∣∣ψt〉, the solution of which is

e−itĤ
∣∣ψ0
〉

=
∣∣ψt〉. Let us now call ρ̂t :=

∣∣ψt〉〈ψt∣∣. Taking the time derivative of this object one gets
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the following.

∂tρ̂t =
(
∂t
∣∣ψt〉)〈ψt∣∣+

∣∣ψt〉(∂t〈ψt∣∣) = −iĤ
∣∣ψt〉〈ψt∣∣+

∣∣ψt〉〈ψt∣∣iĤ = (1.29)

−iĤρ̂t + ρ̂tiĤ = −i
[
Ĥ, ρ̂t

]
. (1.30)

∂tρ̂t = −i
[
Ĥ, ρ̂t

]
is called the Liouville-von Neumann equation (LV). The operator ρ̂t is an instance

of what is known as a density operator [9] (chapter 2), also known as a density matrix for the case
where dim

{
H
}
< ∞.

Definition 1.3.2 (Density Operator)

Density operators are positive trace class operators with trace 1. This set forms a convex
subset of the relevant Banach algebra that they live in. Assuming that we are working in
some Hilbert space H , we will denote the space of density operators acting in H as S

(
H
)
.

Positive in this context means that given some density operator ρ̂, and for any
∣∣ψ〉 ∈ H ,〈

ψ
∣∣ρ̂∣∣ψ〉 ≥ 0.

For the case of closed systems the density operator starting off in a pure state at time t = 0, i.e.
some

∣∣ψ〉 in the relevant Hilbert space, has a corresponding time-evolved density operator ρ̂t which
is always a projector. We mentioned the trace earlier when defining trace class operators. The trace
is a linear operator which we shall be using frequently, therefore a detailed treatment is in order. We
begin with one of the more standard definitions of the trace.

Definition 1.3.3 (Trace)

Let H be some arbitrary Hilbert and assume that σ̂ ∈ B
(
H
)
. Furthermore, let

{∣∣ψn〉}n be
any orthonormal basis of H . Then the trace is defined as follows.

Tr{σ̂} :=
∑
n

⟨ψn|σ̂|ψn⟩

The value of the trace, assuming that it exists, is independent of the basis chosen.

Assuming that ρ̂, σ̂ ∈ S
(
H
)

for some arbitrary Hilbert space H , and
∣∣ϕ〉 ∈ H , the following

list of properties are true.

1) Tr
{
aρ̂ + bσ̂

}
= aTr

{
ρ̂
}

+ bTr
{

σ̂
}

(1.31)

2) Tr
{

ρ̂
}

=
∑
n

λn
(
ρ̂
)

(Sum over eigenvalues) (1.32)

3) Tr
{

ρ̂σ̂
}

= Tr{σ̂ρ̂} (1.33)
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4) Tr
{

σ̂ρ̂
}

≤ Tr
{

σ̂
}
Tr
{

ρ̂
}

(1.34)

5) Tr
{∣∣ϕ〉〈ϕ∣∣} =

∣∣〈ϕ∣∣ϕ〉∣∣2 (1.35)

Assuming that we have a quantum system in state ρ̂, we may compute expectation values of an
arbitrary observable Â as follows.

6)
〈
Â
〉

ρ̂
= Tr

{
ρ̂Â
}

(Expectation V alue w.r.t state ρ̂) (1.36)

When a density operator is a projector we will call it a pure state, otherwise, it will be a convex
mixture of density operators σ̂ =

∑
n pnσ̂n, σ̂n are density operators and

∑
n pn = 1. Such states

will be referred to as mixed states. Mixed states of course live in the space S
(
H
)
. Owing to their

projective properties, any pure state σ̂ will satisfy the the equality Tr
{

σ̂2} = Tr
{

σ̂
}

; on the other
hand, for a mixed states Tr{σ̂2} < 1 [9] (Chapter 2). The map γ

(
Â
)

:= Tr
{

Â2}is known as the
purity [9] and it is one of many measures of mixedness for density operators. For any density operator
ρ̂ acting in a finite-dimensional Hilbert space H , the purity will always be bounded as follows.

1
dim

{
H
} ≤ Tr

{
ρ̂2} ≤ 1. (1.37)

Mixed states have a natural interpretation as a probabilistic ensemble. This comes about physically
when the system is known to be in, say, one of the states of a given ensemble

{
pn, σ̂n

}
but there is

no definite knowledge as to which of these elements it is other than a probability distribution pn [9].

The concept of mixed states may also be used to quantify the quantumness of a system in the
following sense. Consider a quantum system in the pure state ρ̂t =

∣∣ψt〉〈ψt∣∣ at time t, and consider
a situation where we are interested in measuring some observable X̂. For simplicity assume that we
are working in a finite-dimensional Hilbert space and that the observable X̂ has full rank. We may
then diagonalize X̂ and use its eigenvectors

{∣∣ϕn〉}n to represent the density operator ρ̂t as follows.

ρ̂t =
∑
n,m

αn(t)α∗
m(t)

∣∣ϕn〉〈ϕm∣∣. (1.38)

where αn(t) :=
〈
ϕn
∣∣ψt〉. In the case where

∣∣ψt〉 is an eigenvector of X̂, say
∣∣ϕj〉, (1.38) is equal to∣∣ϕj〉〈ϕj∣∣ as expected. If we however assume that

∣∣ψt〉 is not an eigenvector of X̂, then in such a case
(1.38) will have off-diagonal entries in the

{∣∣ϕn〉}n representation. This structure will persist so long
as the system is described by a superposition state. To see this note that (1.38) is just

(1.38) =
(∑

n

αn(t)
∣∣ϕn〉)(∑

m

〈
ϕm
∣∣α∗
m(t)

)
(1.39)

which is a diad of superposition states. The off-diagonal terms of the density are therefore an inherently
quantum feature, making the case where the off-diagonal entries are zero minimally quantum. The
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off-diagonal terms of the matrix will not be zero in general. In particular, under unitary evolution
(1.38) will always have off-diagonal entries. In cases, which we will be discussing shortly, where the
dynamics are not generated by a unitary group (1.2), the off-diagonal entries αn(t)α∗

m(t) will decay
with respect to t. For large t we would therefore have∑

n,m

αn(t)α∗
m(t)

∣∣ϕn〉〈ϕm∣∣ ≈
∑
n

|αn(t)|2
∣∣ϕn〉〈ϕn∣∣ (1.40)

which is a mixed state of a family of orthogonal projectors. Such a state represents a classical
probability distribution since the different states

∣∣ϕn〉 are distinguishable amongst one another. Note
that there is no way to represent the right-hand side of (1.40) as a pure state. The mixture (1.40) is a
minimally quantum one with respect to the observable X̂. Mixtures need not be minimally quantum
in general, specific types of dynamics are required to achieve this. We have been using the term
quantumness in a vague sense up until this point, now that we have the tools to formalize what we
wish to convey with such a word we present a mathematical definition for quantumness.

Definition 1.3.4 (Quantumness)

Let H be an arbitrary Hilbert space and consider a general quantum state ρ̂ ∈ S
(
H
)
. A

general quantum sate ρ̂ may always be written in the convex linear combination ρ̂ =
∑
n pnρ̂n.

The quantumness of a density operator ρ̂ will be defined as

Q
(
ρ̂
)

:=
{ ∣∣∣ 1

2
∑
n

∑
m;m ̸=n pnpmTr

{
ρ̂nρ̂m

}∣∣∣ (Mixed ρ̂)

1 (pure ρ̂)
(1.41)

which is a representation-independent quantity. Indeed 0 ≤ Q
(
ρ̂
)

≤ 1.

Quantumness may also be defined in terms of the purity γ.i.e.

Q
(
ρ̂
)

:=
{ ∣∣∣γ(ρ̂)−

∑
n pnγ

(
ρ̂n
)∣∣∣ (Mixed ρ̂)

1 (pure ρ̂)
(1.42)

To make sense of the value of Q(ρ̂) = 1 for pure states consider the mixed state ρ̂ε = 1
2 σ̂1 + 1

2 σ̂2,ε,
with σ̂1 a pure state and σ̂2,ε := σ̂1+εη̂

1+ε (η̂ an arbitrary density operator). Then

lim
ε→0

Q
(
ρ̂ε
)

= lim
ε→0

∣∣∣Tr{σ̂1σ̂2,ε
}∣∣∣ = lim

ε→0

1
1 + ε

∣∣∣(Tr{σ̂2
1} + εTr{σ̂1η̂}

)∣∣∣ = (1.43)

Tr{σ̂2
1} = 1 (1.44)

This means that pure states may be approximated by mixed states with quantumness arbitrarily close
to one. This is in line with our intuition of pure states being the most quantum-like. Now, consider
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the right-hand side of (1.40) again. In this case

Q

(∑
n

|αn(t)|2
∣∣ϕn〉〈ϕn∣∣) = 1

2

∣∣∣∑
n

∑
m;m̸=n

pnpm
∣∣〈ϕn∣∣ϕm〉∣∣2∣∣∣ = (1.45)

1
2

∣∣∣∑
n

∑
m;m ̸=n

pnpmδn,m

∣∣∣ = 0 (1.46)

which is minimal quantumness as per Definition 1.3.4. Mixed states allow us to estimate the level
of quantumness in a system to the extent that we are able to express the state in question as a
mixture, which is always possible. Quantumness may be used as a measure of decoherence [12] which
is the theory concerned with studying the transition of quantum states to classical probability states
as noted in (1.40). The measure we have defined in Definition 1.3.4 allows us to study the latter
but in an inverted sense. i.e. minimal quantumness will correspond with maximal decoherence and
vice-versa. We now present a mathematical definition for decoherence.

Definition 1.3.5 (Decoherence Measure)

Let H be an arbitrary Hilbert space and consider a general quantum state ρ̂ ∈ S
(
H
)
. A

general quantum sate ρ̂ may always be written in the convex linear combination ρ̂ =
∑
n pnρ̂n.

The decoherence measure of a density operator ρ̂ will be defined as

DK
(
ρ̂
)

:= 1 − Q
(
ρ̂
)

(1.47)

Indeed 0 ≤ DK
(
ρ̂
)

≤ 1. Maximum and minimum decoherences occur when DK
(
ρ̂
)

= 1 and
DK
(
ρ̂
)

= 0 respectively.

1.3.2 Trace for the Infinite-Dimensional H Case

Let H be some infinite dimensional Hilbert space and let K̂ ∈ S
(
H
)
. Therefore

Tr
{

K̂
}

=
∞∑
n=0

〈
ϕn
∣∣K̂∣∣ϕn〉 < ∞ (1.48)

since density operators are trace class, where {
∣∣ϕn〉}∞

n=0 = H . Recall that trace-class operators have
only point-spectrum (eigenvalues). Therefore, if the set {

∣∣ϕn〉}∞
n=0 is taken to be the set of eigenvectors

of K̂, then

Tr
{

K̂
}

=
∞∑
n=0

λn
(
K̂
)
. (1.49)

This sum produces no issues since the spectrum of compact self-adjoint operators is always absolutely
summable.

As we discussed in the previous subsection, calculating the spectrum of an arbitrary trace-class
operator is in general an arduous task. Here we would need an infinite amount of eigenvalues and
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eigenvectors in order to calculate the trace. In some instances, however, the trace class operator K̂

will be an integral operator, and the theory of traces for integral operators has some useful results
that we may tap into. The following is a direct consequence of Mercer ’s theorem from functional
analysis [30].

Theorem 1.3.1 (Corollary to Mercer’s Theorem)

Suppose K(x, y) is a continuous, symmetric positive-definite kernel that is compactly sup-
ported; define

K̂ : H → H :=
∣∣ψ〉 →

∫
R

∫
R
K(x, y)

∣∣x〉〈y∣∣ψ〉dxdy (1.50)

then
Tr
{

K̂
}

=
∫
R
K(x, x)dx (1.51)

The way integral operators come about in closed quantum systems may be exemplified by the
following. Consider the case where H = L2(R), and let

∣∣ψ〉〈ψ∣∣ ∈ S
(
L2(R)

)
. Let us now act on both

sides of
∣∣ψ〉〈ψ∣∣ with the identity ( where we use some conventions from physics [6] Chapter 6) .

(∫ ∣∣x〉〈x∣∣dx)∣∣ψ〉〈ψ∣∣( ∫ ∣∣x〉〈x∣∣dx) = (1.52)

∫ ∫
ψ∗(x)ψ(y)

∣∣x〉〈y∣∣dxdy (1.53)

In function notation such an operator acts on an arbitrary function f(x) ∈ L2(R) as follows.

∣∣ψ〉〈ψ∣∣ : f(x) → ψ(x)
∫
R
ψ∗(y)f(y)dy. (1.54)

In physics, assuming that the states ψ(x) are compactly supported and continuous is usually physically
reasonable and more faithful to reality than otherwise. Hence, Theorem 1.3.1 is truly all we need for
the physical case. However, Theorem 1.3.1 was generalized by Brislawn to include a wider family of
kernels K(x, y); this includes any Hilbert-Schmidt Kernel [3], which will be our primary focus. This
means that we may work in the more general setting allowed by Brislawn’s results [47] and rest at ease
knowing that such generalities include the physical setting encompassed by Theorem 1.3.1. Rather
than cite all of the relevant papers that Brislawn published, the interested reader is recommended to
consult [47](Addenda D) for a succinct discussion and detailed list of references.

1.4 Open Quantum Systems and the Partial Trace

The point of departure from closed to open quantum systems takes place when one assumes that
the system of interest, which we will refer to as S, is interacting with another system/ other systems
which we will call the Ek for the kth systems. We use the letter E to emphasize the dichotomy
between System and Environments. The total dynamics of the system S and the environments Ek

will not be our focus, but rather the local dynamics pertaining to S. To treat compound quantum
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systems, one must construct bigger Hilbert spaces. i.e. let HS and HEk all be arbitrary Hilbert spaces
and let ρ̂S ∈ S

(
HS

)
, ρ̂E

k

∈ S
(
HEk

)
(This superscript and subscript convention will make things

easier to organize later). Furthermore assume that Ĥtot is a Hamiltonian acting in HS⊗
⊗

k HEk .The
Liouville-von Neumann equation (1.30) then has the following solution.

e−itĤtot

(
ρ̂S
⊗
k

ρ̂E
k
)
eitĤtot (1.55)

In principle, the state (1.55) contains all information about the state of the system S and all environ-
ments Ek after time evolution. In the case where some scientist conducting experiments on S has no
means by which to measure the properties of the Ek, such a state (1.55) includes more than can be
known. The state of the object the scientist is observing might live only in HS , but due to the lack
of knowledge regarding the correlations of S to the Ek the state of S will now evolve in a non-unitary
fashion since information and energy and perhaps other things might be traded between S and the
Ek as time evolves. If the Ek are large enough, such an evolution may become irreversible!

How does one isolate the local dynamics pertaining to the system S? The answer is simple, we
take a trace! But not over all of S1

(
HS⊗

⊗
k HEk

)
, we trace only over the stuff we cannot physically

track, in this case, this is S1
(⊗

k HEk

)
. This brings us to the definition of the partial trace. We

write the definition in a way that is suggestive of the models we shall be working on.

Definition 1.4.1 (Partial Trace)

Let HS ⊗
⊗

k HEk be some arbitrary tensor product Hilbert space, and assume that σ̂ ∈
B
(
HS ⊗

⊗
k HEk

)
. Furthermore, let

{∣∣ϕEk

n

〉}
n

be any orthonormal basis of HEk . Then the
partial trace over B

(
HEl

)
is the linear map

TrEk : B
(
HS ⊗

⊗
k

HEk

)
→ L

(
HS ⊗

⊗
k;k ̸=l

HEk

)
defined as follows

TrEl{σ̂} =
∑
n

⟨ϕE
l

n |σ̂|ψE
l

n ⟩

where L (H ) refers to the space of linear operators acting in H . The value of the partial
trace is independent of the basis chosen.

If we specialize the partial trace to only the space S
(
HS ⊗

⊗
k HEk

)
, then all of the partial traces

will exist and will be once again density operators.

Why the partial trace?

To assure ourselves that the partial trace is the appropriate mapping to use in the deduction of the
local dynamics consider an arbitrary observable ÂS acting in HS . There is a natural embedding of
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such an observable that extends it to the space of observables acting in HS ⊗
⊗NE

k=1 HEk .

ÂS → ÂS ⊗
NE⊗
k=1

IEk , (1.56)

where IEk is the identity operator of B
(
H k
E ). Viewing AS ⊗

⊗NE

k=1 IEk as an observable acting in the
total Hilbert space HS ⊗

⊗NE

k=1 HEk one can obtain the expectation value using the total system’s
density operator using (1.36) as follows

〈
ÂS ⊗

NE⊗
k=1

IEk

〉
ρ̂SE

= TrS

{
TrE1

{
TE2

{
...
{
TrENE

{
ρ̂SE

(
ÂS ⊗

NE⊗
k=1

IEk

)}}}}}
(1.57)

In the usual closed quantum systems setting there are no correlations assumed between S and any Ek

in the universe. The total state ρ̂SE must therefore be a product state; for the readers knowledgeable
of quantum entanglement we briefly comment that an uncorrelated state is forcibly unentangled,
quantum correlations being more general than entanglement (see [45] chapter 4). Hence, ρ̂SE has the
form ρ̂S ⊗

⊗NE

k=1 ρ̂Ek , with ρ̂S ∈ B
(
HS

)
, ρ̂E

k

∈ B
(
HEk

)
. We now compute (1.57) to obtain

TrS

{
TrE1

{
TE2

{
...
{
TrENE

{
ρ̂S ⊗

NE⊗
k=1

ρ̂Ek

(
ÂS ⊗

NE⊗
k=1

IEk

)}}}}}
= (1.58)

TrS

{
TrE1

{
TE2

{
...
{
TrENE

{
ρ̂SÂS ⊗

NE⊗
k=1

ρ̂Ek

}}}}}
= (1.59)

TrS

{
ρ̂SÂS

} NE∏
k=1

TrEk

{
ρ̂Ek

}
= TrS

{
ρ̂SÂS

}
= (1.60)

〈
ρ̂SÂS

〉
ρ̂S

(1.61)

We, therefore, conclude that 〈
ÂS ⊗

NE⊗
k=1

IEk

〉
ρ̂SE

=
〈

ρ̂SÂS

〉
ρ̂S

(1.62)

Meaning that the information needed to compute the statistical properties of some observable in S

are completely contained in the reduced density operator

TrE1

{
TE2

{
...
{
TrENE

{
ρ̂S ⊗

NE⊗
k=1

ρ̂Ek

}}}}
= ρ̂S (1.63)

In this discussion, we have assumed a tensor product structure for the environmental degrees of
freedom, this was not a technical assumption, however. We may arrive at the same conclusion (1.62)
without the latter assumption via an identical approach.
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Non-dynamical example

To understand the effects of the environments Ek on measurements being conducted in S, let us
take the environment to be a single E in the state ρ̂E ∈ S

(
HE

)
, where HE is an arbitrary Hilbert

space. Let us assume that the sate ρ̂E is diagonal with respect to some basis
{∣∣Ei〉}i. Finally, let

us assume that the state of S is pure, namely
∣∣ψ〉〈ψ∣∣, for some vector

∣∣ψ〉 ∈ HS ( an arbitrary
Hilbert space). Consider an observable X̂ with countable Spec

{
X̂
}

which is all point spectrum, and
associated eigenvectors

{∣∣ηi〉}i that span HS ; for the case where HS span will of course refer to the
closure of the span of

{∣∣ηi〉}i. We may represent
∣∣ψ〉〈ψ∣∣ in such a basis as

∑
i

∑
j αiα

∗
j

∣∣ηi〉〈ηj∣∣; where
αi :=

〈
ηi
∣∣ψ〉. Furthermore, consider a state ρ̂SE ∈ S

(
HS ⊗ HE

)
with the following representation.

ρ̂SE =
∑
i,j

αiα
∗
j |ηi⟩⟨ηj

∣∣⊗
∣∣Ei〉〈Ej∣∣. (1.64)

Such a state is non-separable, i.e. it may not be written as a tensor product ρ̂S⊗ ρ̂E where ρ̂S and ρ̂E

are respectively elements of S
(
HS

)
and S

(
HE

)
; such a state (1.64) therefore describes correlations

between S and E. As before, given some local observable ÂS of HS , we would like to compute its
statistics; starting with the expectation value. The density operator we need is the reduced state of
(1.64). i.e.

TrE
{

ρ̂SE
}

= TrE

{∑
i,j

αiα
∗
j |ηi⟩⟨ηj

∣∣⊗
∣∣Ei〉〈Ej∣∣} = (1.65)

∑
i,j

αiα
∗
jTrE

{∣∣Ei〉〈Ej∣∣}|ηi⟩⟨ηj
∣∣ =

∑
i,j

αiα
∗
jδij |ηi⟩⟨ηj

∣∣ = (1.66)

∑
i

|αi|2
∣∣ηi⟩⟨ηi∣∣ (1.67)

This is a noteworthy result for two reasons. First, the resulting density operator is diagonal. Taking the
partial trace over the perfectly distinguishable environmental degrees of freedom has induced minimal
quantumness (Definition 1.3.4) and therefore maximal decoherence (Definition 1.3.5). Second, at the
risk of being redundant, one should remark that the resulting density operator is a mixed state in
spite of

∣∣ψ〉〈ψ∣∣ having been pure to begin with. It is the correlations with E and our ignorance of the
information of the state of E that induces maximal decoherence and leaves us with a state that is de
facto a classical probability distribution.

1.5 Environmentally Induced Non-Unitarity

We have seen that the correlations between some quantum system S and its environmentsEk

are the source of decoherence. The imminent question is now, how do such correlations arise? To
shed light on this question consider once again a total Hilbert space HS ⊗ HE and let Ĥtot be some
Hamiltonian acting in such a Hilbert space. Since we are only interested in the creation of correlations,
as opposed to the time-evolution of pre-existing correlations, we will narrow our attention to initial
states ρ̂SE0 ∈ S

(
HS ⊗ HE

)
that are separable. i.e. ρ̂SE0 = ρ̂S0 ⊗ ρ̂E0 . The time-evolution operator

obtained from solving the LV equation (1.30) in such a case is Ût = e−itĤtot . The local time evolution
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of the open quantum system S is hence

ρ̂St
= TrE

{
Ût

(
ρ̂S0 ⊗ ρ̂E0

)
Û†
t

}
. (1.68)

Now, assume that the environment E is in the diagonal state ρ̂E0 =
∑
i αi|Ei⟩⟨Ei|; this assumption

does not affect generality since one can always use the invariance of the trace under unitary trans-
formations in order to diagonalize the state ρ̂E0 , such a diagonalization will, of course, change the
representation of Ĥtot. The state (1.68) can now be expanded as seen below.

TrE
{

Ût

(
ρ̂S0 ⊗

∑
i

αi|Ei⟩⟨Ei|
)

Û†
t

}
(1.69)

=
∑
i

∑
j

√
αi
〈
Ej
∣∣Ût

(
ρ̂S0 ⊗ |Ei⟩⟨Ei|

)
Û†
t

∣∣Ej〉√αi = (1.70)

=
∑
i

∑
j

∑
k

∑
l

√
αi
〈
Ej
∣∣Ût

∣∣Ek〉〈Ek∣∣(ρ̂S0 ⊗ |Ei⟩⟨Ei|
)∣∣El〉〈El∣∣Û†

t

∣∣Ej〉√αi = (1.71)

∑
i

∑
j

∑
k

∑
l

√
αi
〈
Ej
∣∣Ût

∣∣Ek〉(ρ̂S0

〈
Ek
∣∣Ei⟩⟨Ei∣∣El〉)〈El∣∣Û†

t

∣∣Ej〉√αi = (1.72)

∑
i

∑
j

∑
k

∑
l

√
αi
〈
Ej
∣∣Ût

∣∣Ek〉(ρ̂S0δkiδil

)〈
El
∣∣Û†

t

∣∣Ej〉√αi = (1.73)

∑
i

∑
j

√
αi
〈
Ej
∣∣Ût

∣∣Ei〉ρ̂S0

〈
Ei
∣∣Û†

t

∣∣Ej〉√αi (1.74)

The operators
M̂ij,t := √

αi
〈
Ej
∣∣Ût

∣∣Ei〉 (1.75)

have some interesting properties. The first is the resolution of identity in the following sense.∑
i

∑
j

M̂†
ij,tM̂ij,t = IS (1.76)

Proof. ∑
i

∑
j

M̂†
ij,tM̂ij,t =

∑
i

αi
∑
j

〈
Ei
∣∣Û†

t

∣∣Ej〉〈Ej∣∣Ût

∣∣Ei〉 = (1.77)

∑
i

αi
〈
Ei
∣∣Û†

tIS ⊗
(∑

j

∣∣Ej〉〈Ej∣∣)Ût

∣∣Ei〉 = (1.78)

∑
i

αi
〈
Ei
∣∣Û†

tIS ⊗ IEÛt

∣∣Ei〉 (1.79)

∑
i

αi
〈
Ei
∣∣IS ⊗ IE

∣∣Ei〉 = IS
∑
i

αi = IS (1.80)

The second interesting property is that the operators M̂ij(t) will, in general, generate non-unitary
evolution; with the exception of very special Ĥtot, these maps will induce decoherence. To see this, let
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us specialize the above to a simple case where the Hamiltonian Ĥtot = ÂS ⊗
∑
iEi
∣∣Ei〉〈Ei∣∣. Where

ÂS is an observable acting in HS . With such a Hamiltonian it can be easily shown that

M̂ij,t =
√
αie

−itEiÂSδij (1.81)

and hence
(1.74) =

∑
i

∑
j

αie
−itEiÂSδijρ̂S0e

itEiÂSδji = (1.82)

∑
i

αie
−itEiÂS ρ̂S0e

itEiÂS . (1.83)

The density operator (1.83) is mixed for all t
(

unless
[
ÂS , ρ̂S(0)

]
= 0
)
. This means that the purity

of ρ̂S0 will not be preserved and thus the non-unitarity dynamics. For all t, the operators
{

M̂ij,t

}
ij

are an instance of what is referred to as a family of Kraus operators in the literature of quantum
information and quantum computation[9] [45]. Non-unitary evolution will always be generated by a
family of Kraus operators. The maps generated by a family of Kraus operators are what is known as
a Quantum Map in the theory of quantum information and quantum computation [9] [45], a concept
that we will develop further in the following chapter. The hurdle that comes from this approach to
the modeling of open quantum systems is two-fold. Firstly, one must compute the inner products
M̂ij,t :=

〈
Ej
∣∣Ût

∣∣Ei〉. Secondly, assuming that the explicit nature of the map M̂ij,t is known for all
ij, it will remain a difficult task to understand how these operators act on ρ̂S0 from the left and from
the right. Both of these aforementioned hurdles will require us to understand the spectral decompo-
sition of the operator Ĥtot in order to understand the explicit nature of Ût; a task that we concluded
to be in general intractable earlier in this chapter in sections (1.2) and (1.3). All hope is not lost,
however, formidable estimation techniques may be implemented in order to tame these hurdles. For
the cases where the environment E is very large compared to the systems S, one may implement the
so-called Born-Markov approximations [17][12][45] that yield a relatively wieldy equation called the
GKLS (after its creators Gorini–Kossakowski–Sudarshan–Lindblad) [45] that generalizes the LV equa-
tion for the case of the non-unitary dynamic generated by a semigroup. Such an equation allows an
indirect estimation of the associated Kraus operators. We present the GKSL equation here, although
the models pertaining to the main results of this work will not require us to utilize GKSL equation
in any practical sense other than to exhibit some physical examples of non-unitarity in the next section.

Let the total Hamiltonian Ĥtot have the following structure.

Ĥtot = ĤS + ĤE + ĤI (1.84)

i.e. it will be a linear combination of the self-Hamiltonians of S and E respectively as well as an
interaction term ĤI . Under necessary assumptions required by the GKSL [17] framework one may
transition from (1.74) to the following; i.e. (1.74) is a solution to an equation of the following form.

∂tρ̂St
= −i

[
ĤS , ρ̂St

] +
∑
i

γi

(
L̂iρ̂St

L̂†
i − 1

2

{
L̂†
i L̂i, ρ̂St

})
(1.85)
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This is the GKSL equation, the operators L̂i are referred to as collapse operators with respective
rates γi. The elements involving the collapse operators on the right-hand side of (1.85) will constitute
the non-unitary dynamics. These collapse operators will induce dissipation and decoherence. The
Liouivillian term−i

[
ĤS , ∂tρ̂St

] will induce the unitary self-dynamics of the system S. Equation (1.85)
was originally developed for the case of bounded collapse operators in [48] but recently it has been
formalized on equal theoretical grounds for the case of unbounded collapse operators in [49]. In the
next section, we will show some physical examples of non-unitary evolution, two of which will arise
from solving the appropriate GKSL equation.

1.6 Physical Examples of Open Quantum Systems

Quantum mechanics is a theory of matter which is more fundamental than the classical theories
afforded by Newtonian dynamics and Maxwell’s equations. Quantum mechanics is therefore the
correct theory to describe anything around us. In this sense, everything is a Quantum Open system
because everything we deemed to be a system will sit within a larger system. If the latter were not
to be the case we would inevitably have to face the Heisenberg-Cut dilemma [34] which asks "where
does one draw the boundary between the classical and the quantum?". Classical beings nevertheless
exist in a realm where so-called quantum effects may be negligible and classical mechanics is enough
to aid us in understanding our environment. However, recent interest in technology which is on the
Nanoscale has functioned as the impetus of a deeper interest regarding the non-unitary (open systems)
dynamics of quantum mechanical systems. Some Quantum computers constructed by IBM [35], for
example, are built from tiny Quantum circuits which are highly susceptible to minuscule disturbances
coming from its entourage. In order to truly understand these Quantum circuits and their dynamical
properties, a strong understanding of the non-unitary evolution must be taken into account and this
requires us to consider the quantum system as open. The latter is also true for any system; as the
size of the system becomes smaller the necessity to include interaction terms between the system
and its environment becomes greater. We will give three examples of open quantum systems in this
section. The first will be the spontaneous emission of a two-level atom. This model exemplifies both
dissipative and decoherence effects via the study of an atom, initially in an excited state, interacting
with the vacuum. One expects that owing to the vastness of the vacuum compared to the smallness
of the atom, the atom will emit a photon and lose its energy to the vacuum. Such a physical system
therefore cannot be modeled via the unitary evolution afforded by the LV equation. We will therefore
make use of the GKSL equation appropriate for this system in order to study dynamics that are
more physically grounded. Next, we will look at another one of the canonical models of decoherence,
namely scattering decoherence. This model will be used to exemplify the fact that decoherence need
not be accompanied by dissipation whilst dissipation is always accompanied by decoherence. The
model will consist of a mesoscopic-sized sphere being bombarded by a field of monochromatic light.
We will see that under a very short time scale, virtually full decoherence takes place. The last
model we will present will be a monitoring model akin to the main item of study in this thesis (see
Chapters 5 and 6). Here we will study a multipartite/multifaceted (we will use both of these terms
interchangeably) open quantum system model. Up until now, we have considered S to be one entity;
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the formalism we have developed nevertheless allows for ρ̂S0 to be a separable tensor product state
at t = 0 (multipartite/multifaceted). We may also evolve this multipartite state non-unitarily by
considering dynamics between this multipartite system S’s state and some environments Ek.

1.6.1 Spontaneous Emission

Consider a two-level atom coupled to a bath in the vacuum states. Such a system may be modeled
with HS = C2 and HE = L2(R) for the system S and the environment E respectively. We will let
the total Hamiltonian modeling the dynamics be that which is used in [15] chapter 3. i.e.

Ĥtot = ωa
2 σ̂z +

∑
k

ωkb̂†
kb̂k +

∑
k

(gkb̂k + gkb̂†
k)(σ̂+ + σ̂−) (1.86)

For an introductory synopsis on spin algebras for the two-level system and/or the ladder operators of
the quantum harmonic oscillator being used here, we recommend the introductory quantum textbook
[6]. The respective GKSL equation of such a model may be computed to be

∂tρ̂St
= −i

2 (ωa + ∆ωa)[σ̂z, ρ̂St
] + γD[σ̂−]ρ̂St

. (1.87)

where D[σ̂−]
(
ρ̂
)

= σ̂−ρ̂σ̂+ − 1
2 (σ̂+σ̂−ρ̂+ ρ̂σ̂+σ̂−), [15] for a derivation. σ̂z is an element of the Pauli

matrices. The constants ∆ωa and γ depend on the environmental frequencies ωk and the coupling
parameters gk. Letting

∣∣0〉, and
∣∣1〉 be some basis for C2, the Pauli matrices will have the following

representation.
σ̂x =

∣∣0〉〈1∣∣+
∣∣1〉〈0∣∣ (1.88)

σ̂x = i
∣∣0〉〈1∣∣− i

∣∣1〉〈0∣∣ (1.89)

σ̂z =
∣∣1〉〈1∣∣−

∣∣0〉〈0∣∣ (1.90)

σ̂+ = 2(σ̂x + iσ̂y) (1.91)

σ̂− = 2(σ̂x − iσ̂y) (1.92)

The operators b̂ and b̂† are the ladder operators for the QSHO discussed in (1.24) and have the
following properties for an arbitrary number state

∣∣n〉
b̂
∣∣n〉 =

√
n
∣∣n− 1

〉
, b̂
∣∣0〉 = 0 (1.93)

b̂†∣∣n〉 =
√
n+ 1

∣∣n+ 1
〉

(1.94)

We now solve (1.87). The most general form a the density operator ρ̂St
∈ S

(
C2) can take is

ρ̂St
= 1

2[IS + x(t)σ̂x + y(t)σ̂y + z(t)σ̂z] (1.95)

Coherences (off-diagonal entries) are present because of the σ̂y and σ̂x terms. We will therefore be
able to monitor decoherence by analyzing the functions x(t) and y(t). The scalar functions x(t), y(t),
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and z(t) are computed in the following way.

• ∂tz(t) = Tr{σ̂z∂tρ̂St
}

• ∂ty(t) = Tr{σ̂y∂tρ̂St
}

• ∂tx(t) = Tr{σ̂x∂tρ̂St
}

Using the GKSL equation to substitute for ∂
∂t ρ̂St

and ρ̂St
using (1.95) and the above differential

equations for x(t), y(t) and z(t) we have

• ∂tz(t) = −γ(z(t) + 1)

• ∂ty(t) = (∆ωa)x(t) − γ
2 y(t)

• ∂tx(t) = −(∆ωa)y(t) − γ
2x(t).

Assuming that the atom is initially in the excited state, i.e. x(0) = 0, y(0) = 0 and z(0) = 1, we get
the following solution to (1.87).

• z(t) = 2e−γt − 1

• y(t) = −e− γt
2 sin((ωa + ∆ωa)t)

• x(t) = e− γt
2 sin((ωa + ∆ωa)t).

The solution to the GKSL equation in the spontaneous emission case is therefore the following density
operator.

ρ̂St
= e−γt∣∣1〉〈1∣∣+ 1 + i

2 e−γt sin ((ωa + ∆ωa)t)
∣∣1〉〈0∣∣+ (1.96)

1 − i

2 e−γt sin ((ωa + ∆ωa)t)
∣∣0〉〈1∣∣+

(
1 − e−γt)∣∣0〉〈0∣∣ (1.97)

Notice the exponential decay! This was to be expected! Also, notice the decoherence, i.e. DK(ρ̂St
) →

0 as t → ∞ (using the decoherence measure defined in Definition 1.3.5). The off-diagonal entries
decay as expected. In the limit t → ∞ this state converges the ground state

∣∣0〉〈0∣∣. A caricaturistic
depiction of this setting is exhibited on the following page (Figure 1.1). Notice that had we ignored any
interactions with the vacuum, the two-level atom would have evolved unitarily via the Hamiltonian
ĤS = ωaσ̂z

2 . However, due to the initial state being
∣∣1〉〈1∣∣, there would be no dynamics because the

excited state is an eigenvector of the Pauli matrix σ̂z.
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Figure 1.1: A caricaturistic depiction of a single energized spin in a bath of oscillators. The vast bath of
oscillators greedily yearning for the energy ℏω of the spin system. Greatly outnumbered and outmatched, the
spin system has no choice but to give up its energy. Artwork by Timothy Martinez @timbosculpt.
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1.6.2 Collisional Decoherence

Let
∣∣x〉 represent the generalized eigenvector of the position operator X̂ of a mass point of some

mesoscopic object (system) S,
∣∣E〉 will represent the state of a scattered particle or particles (envi-

ronment) E. We will consider a simple case where the system S is large enough that it experiences
no recoil from the scattered particles constituting the environmental degrees of freedom E. Some
examples of systems with no recoil would be large molecules, dust particles, or even something like
a bowling ball scattering photons (although describing a bowling ball with quantum mechanics is
rather tenuous). The photons in all of these cases will have virtually no effect on the trajectory of
the systems due to the size disparity between the systems in question and the scattering particles;
a recoilless approximation is therefore appropriate. The recoilless scattering dynamics will now be
summarized by the appropriate S −matrix (scattering matrix) as it is done in [18] [12].

∣∣x〉⊗
∣∣E〉 t−→

∣∣x〉⊗
∣∣Ex〉 =

∣∣x〉⊗ Ŝx
∣∣E〉. (1.98)

The S − matrix, Ŝx is a unitary operator that maps some initial state of incoming particles, say
photons, to the final state (scattered state). The nature of the S −matrix will indeed depend on the
type of particles being scattered off the center x, the type of particle doing the scattering, the forces
involved, and the initial velocities; the details regarding generalities of S −matrix theory lie beyond
the scope of the present discussion so we will omit them referring the interested reader to the relevant
discussion in [18] [12]. In [18] such a scattering setup is considered in order to compute decoherence
time scales for mesoscopic systems. There, an arbitrary wave function of the total system S and E

evolves as depicted below, for S in the initial states ϕ(x) ∈ L2(R) and E in the initial state
∣∣E〉 ∈ HE .

(∫
ϕ(x)|x⟩

)
dx⊗ |E⟩ t−→

∫
ϕ(x)|x⟩ ⊗ Ŝx|E⟩dx, (1.99)

the associated time-evolved density operator is therefore∫ ∫
ϕ(x)ϕ∗(y)

∣∣x⟩
〈
y
∣∣⊗
∣∣Ex〉〈Ey∣∣dxdy. (1.100)

The reduced density operator may be easily computed to be

TrE

{∫ ∫
ϕ(x)ϕ∗(y)

∣∣x⟩
〈
y
∣∣⊗
∣∣Ex〉〈Ey∣∣dxdy} = (1.101)

∫ ∫
ϕ(x)ϕ∗(y)

∣∣x⟩
〈
y
∣∣TrE{∣∣Ex〉〈Ey∣∣}dxdy =

∫ ∫
ϕ(x)ϕ∗(y)

〈
Ey
∣∣Ex〉∣∣x⟩

〈
y
∣∣dxdy. (1.102)

The kernel
〈
Ey
∣∣Ex〉 will yield non-unitary dynamics, the nature of which will depend on the properties

of the particles being scattered; this includes the state of particles at t = 0 amongst other things.
If the initial state of E belongs to the subspace associated with the absolutely continuous spectrum
of Ŝx, then in such a case the kernel

〈
Ey
∣∣Ex〉 will only yield decoherence (See section 5.8). More

generally, if the initial state of E belongs to the subspace associated with the Rajchman [58] spectrum
of Ŝx then once again we will only see non-unitary dynamics involving decoherence (See Section 5.8).
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The latter details will be formalized in Chapter 5, for now, we will focus on the physically derived
case where

〈
Ey
∣∣Ex〉 is a function that becomes small as |x − y| becomes large; this follows from the

relevant discussions in [18] [12].

Photon scattering, Long-Wavelength limit

Let us fix x and x′ for the moment. Assume that E are environmental photons and S a sphere so
massive that it undergoes no recoil when scattering photons; if the wavelength of the incoming photons
satisfies λ >> |x−x′|, then a single scattering event will not resolve the distance |x−x′| i.e. coherences
of distances on this order will not instantaneously disappear. They will decay exponentially. Using
photons restricted to the above condition it can be shown [18](other zeh and joos paper) that

⟨E|Ŝ†
x′ Ŝx|E⟩ ≈ e−Λt(x−x′)2

(1.103)

for n photon scattering events, where the term Λt depends on n. i.e. the number of scattering events
n is directly proportional to t. The relationship is the following, t = n

L2∗flux , L is the length used to
normalize the momentum wave functions [18]. The termΛ is the scattering constant, it represents the
physical properties of the system-environment interaction. This constant is proportional to the size of
the systems, i.e. a bowling ball will have a Λ that is significantly greater than the Λ of a dust particle.
Details regarding the computation of Λ may be found in [18]. In the density operator representation,
we can summarize the dynamics for the state of the systems ϕ(x) ∈ L2(R) at t = 0 as follows.

ρ̂S0 :=
∫ ∫

ϕ(x)ϕ∗(x′)
∣∣x〉〈x′∣∣dxdy t−→ ρ̂St

:=
∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2 ∣∣x〉〈x′∣∣dxdx′. (1.104)

In Figure 1.2 on the next page, we present a fun caricaturistic interpretation of this model.
Focusing on the kernels, the time-evolved kernel is.

KS(x, x′, t) := ϕ(x)ϕ∗(x′)e−Λt(x−x′)2
(1.105)

A time derivative of the latter yields the differential equation

∂tKS(x, x′, t) = −Λ(x− x′)2KS(x, x′, t). (1.106)

Which is equivalent to the following density operator equation.

∂tρ̂St
= −Λ

[
X̂,
[
X̂, ρ̂St

]]
(1.107)

This is indeed the nonunitary part of the master equation of the recoilless scattering model. As
evidence, look at the kernel 1.105. It is clearl that the off-diagonal entries are decaying exponentially
(i.e. x ̸= x′). If the latter is not a satisfactory argument, one may compute the purity of ρ̂St

to find
that it is less than 1 for t > 0, unfortunately computing DK (Definition 1.3.5) is not an easy task in
this case; it may nevertheless be done.

Tr
{

ρ̂2
St

}
= (1.108)
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Figure 1.2: A caricaturistic depiction of collisional decoherence. The superpositional nature of the large
oscillator is suppressed by the interaction (via elastic scattering) with the smaller environmental oscillators.
Artwork by Artwork by Timothy Martinez @timbosculpt.

Tr
{∫ ∫ ∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2
ϕ(y)ϕ∗(y′)e−Λt(y−y′)2 ∣∣x〉〈x′∣∣y〉〈y′∣∣dxdx′dydy′

}
= (1.109)

Tr
{∫ ∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2
ϕ(x′)ϕ∗(y′)e−Λt(x′−y′)2 ∣∣x〉〈y′∣∣dxdx′dy′

}
= (1.110)∫ ∫

|ϕ(x)|2|ϕ∗(x′)|2e−2Λt(x−x′)2
dxdx′ =

∫ ∫
|KS(x, x′, 0)|2e−2Λt(x−x′)2

dxdx′ < 1 (1.111)

where we have used the generalization of Theorem 1.3.1 discussed in [47] when going from (1.110) to
(1.111). The exponential term damps the integrand in the latter. Hence, for large t the integrand
approaches zero and therefore γ(ρ̂St

) = Tr
{

ρ̂2
St

}
→ 0.

Since the scattering process does not affect the trajectory of our system particle we may include
the intrinsic dynamics ĤS = 1

2m P̂2 into the latter equation to render the full master equation

ρ̂St
= −i

[ 1
2m P̂2, ρ̂St

]
− Λ

[
X̂,
[
X̂, ρ̂St

]]
. (1.112)

Notice that the position operator X̂ above is the only collapse operator. Values for Λ are given in
Table 2.1 for two differently sized dust particles undergoing scattering interactions with varying envi-
ronments. Table 2.1 has been taken from [18] chapter 3.

Prior to scrutinizing equation (1.112) further, let us refocus our attention back to the case where
there is no self dynamics for the system ĤS ; this encapsulates the non-unitary dynamics pertaining
to the recoilless processes. As expected, the recoilless aspect of this interaction means that there is no
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Table 1.1: Λ in cm−2s−1 for two sizes of "dust particles" and various types of scattering processes
evolving according to (1.112). This quantity measures how fast interference between different positions
disappears for the long-wavelength limit. The figure is taken from [18] chapter 3 page 66. CBR below
is an acronym for cosmic background radiation.

Environment Λ for dust grain, 10−3cm Λ for dust particle, 10−5cm
CBR 106 10−6

300k photons 1019 1012

Sunlight on earth 1021 1017

Air molecules 1036 1032

Laboratory vacuum 1023 1019

dissipation; but as we have already mentioned, this does not mean that decoherence is not present.
We have already elucidated on this comment by computing the purity of the evolved state in (1.108),
however, to further illustrate the effects of decoherence let us take a generic state for some mesoscopic
system to be in a simple superposition at t = 0 as is done in [18] chapter 3.

ϕ(x) = N1e
−(x−a1)2

+N2e
−(x−a2)2

(1.113)

Such a state characterizes a typical non-local state of matter. Assuming that our sphere S is in such
a state, we can study the decay of the "off-diagonal" lumps of the associated density operator’s kernel
after scattering has taken place for an amount of time t. In Figure Figure 1.3 below a depiction of
the time evolution of this Gaussian superposition (1.113) is provided. Figure 1.3 is taken from [18]
chapter 3. Note the decaying in the off-diagonal entries KS(x, x′, t), in particular those belonging to
the off-diagonal lumps. A decoherence time scale may be defined as τ∆x := 1

Λ(∆x)2 , ∆x = |x−x′|, this
encapsulates the rate at which decoherence takes place. Smaller decoherence time scales correspond
to larger separations ∆x. The larger the particle is, the larger Λ is, and therefore the smaller τ∆x is for
a respective ∆x. Notice the differences in the values for Λ of dust particles of diameter 10−3cm and
10−5cm presented in Table 1.1. In contrast to Λ, it was shown in [31] that the τ∆, in units of seconds,
pertaining to the case of the larger dust particle are at least four orders of magnitude larger than the
corresponding values pertaining to the smaller dust particle. In Table 1.2 a single size for dust particles
is selected, this time login in values of τ∆x for a fixed value of ∆x. Notice how fast these coherences
dissipate, even a vacuum would decohere any positional coherences of sizes comparable to the size
of our particle S in 10−14 seconds, and these are decoherence time scales for a dust particle of size
10−3cm. Decoherence time scales for objects much larger, or much more classical, would be many or-
ders of magnitude smaller. This is consistent with our day-to-day classical world experiences, in which
we never perceive any macroscopic object or mesoscopic object to be in a superposition; although the
superpositions exist in theory, their lifespans are too short for us to perceive them with the naked eye.

Let us now return to equation (1.112) which more generally describes the dynamics of a free particle
undergoing scattering interactions with some bosonic environments. As we already showed, the non-
unitary term will dissipate the off-diagonal terms of the density operator ρ̂St

as time progresses; the
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Table 1.2: τ∆x is seconds for a large dust particle, ∆x is equal to the diameter of the particle, and
various types of scattering processes. This table is taken from [12] chapter 3 page 135.

Environment τ∆x for Dust grain, 10−3cm
Cosmic background radiation 1
Photons at room temperature 10−18

Best laboratory vacuum 10−14

Air at normal pressure 10−31

Figure 1.3: From Schlosshauer’s paper "Quantum Decoherence" 2019. Collisional decoherence of a density
matrix representing a Gaussian wave packet as generated by equation (1.107) with the initial state (1.113).
The images a) and b) represent |KS(x, x′, t)|2 before and after decoherence respectively.

unitary evolution term −i
[ 1

2m P̂2, ρ̂St

]
from (1.112) will then be responsible for the free spreading of

the wave packet. It can be shown that the free particle Hamiltonian has the effect of spreading localized
wave packets in x ([6] chapter 6) into highly unlocalized ones. As seen in figure 4, a symmetric Gaussian
initial state will become flat in the off-diagonal entries x = −x′ and will extend along the diagonal
x = x′ which represents the probability distribution of our particles position P (x, t) := KS(x, x, t).

Short-wavelength limit

If the wavelength of the scattered environmental particles is much smaller than a coherent separation
∆x = |x− x

′ |, then these environmental particles can resolve such a separation in a single scattering
event. This in turn leads to maximum spatial decoherence per scattering event [12] [18]. In this limit,
the decay of the coherence terms of the density matrix will not depend on |x− x′|, instead we have

KS(x, x′, t) = KS(x, x′, 0)e−Γtott (1.114)

where Γtot is a global decoherence rate. (1.114) should not come to us as a surprise since we have
already seen it when dealing with spontaneous emission.

For both, the long-wavelength and short-wavelength limits of scattering decoherence there is one
conspicuous property of the time-evolved states. This is the narrowing that takes place along the
diagonal (x = x′) of the respective kernel. Were the off-diagonal entries to truly vanish completely
this would imply that full decoherence with respect to the position basis had taken place. However,

40



as the collisional model of decoherence exemplifies, energy is needed to induce decoherence; te energy
in this case is expended by the colliding photons. Recalling that t was directly proportional to
the number of photons scattered one may deduce that it would take infinite energy to induce full
decoherence (i.e.an infinite amount of time). Furthermore, excluding the self-dynamics of the system
S and the photonic field E leads us to overlook any coherences that might ensue dynamically from
the latter. If one were to take a much more descriptive model, one that included the self-dynamics of
both S and E, then one would not see the indefinite narrowing along the diagonal of KS(x, x′, t) as t
became arbitrarily large; in lieu of this one would see a steady state solution to the master equation
arise, one with a limiting narrowing along (x = x′) which is referred to as the limiting coherence
length. A study of such models may be found in [32][33]. For many mesoscopic physical systems
which scatter light, the decoherence time scales are so small that one may simply introduce a cut-off
time T comparable to the decoherence time pertaining to any resolvable coherences; within such a
time domain the decoherence dynamics will be approximately faithful to the actual dynamics so long
as the self-dynamics of S and E are much slower than the dynamics induced by decoherence. In order
to further motivate the collisional decoherence model we will present the Quantum Brownian Motion
[31] in what follows. We will not be solving this model nor discussing its limiting decoherence length
here.

Quantum Brownian Motion

Possibly the most celebrated decoherence model is Quantum Brownian Motion (QBM). This is
a model describing the dynamics of a particle weakly coupled to a thermal bath of non-interacting
harmonic oscillators. The self-Hamiltonian of the environment being a linear combination of QSHOs
(1.23)

HE =
∑
i

( 1
2mi

P̂2
i + 1

2miω
2
i Q̂2

i ), (1.115)

where mi and ωi are the mass and natural frequency of the ith oscillator while Q̂i and P̂i denote the
canonical positions and momenta operators. The interaction Hamiltonian is taken to be

HI = X̂ ⊗
∑
i

ciQ̂i, (1.116)

a bilinear coupling of the system’s position X̂ to the positions Q̂i of the environmental oscillators.
Finally, it is assumed that the system (the particle) S will have oscillatory self-dynamics. i.e

HS = 1
2M P̂2 + 1

2MΩ2X̂2, (1.117)

where M is the mass of the particle and Ω is its natural frequency. Using the Born and Markov

approximations as well as some approximations analogous to what was done for the case of spontaneous
emission (see [12] chapter 3 and [18] chapter 3 )it can be shown that the corresponding Master equation
is the following.

∂tρ̂St
= −i

[
ĤS + 1

2M∆2X̂2, ρ̂St

]
− iγ

[
X̂,
{

P̂, ρ̂St

}]
−D

[
X̂,
[
X̂, ρ̂St

]]
− f
[
X̂,
[
P̂, ρ̂St

]]
. (1.118)
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Following [31], we present below a list defining all of the constants present in such a master equation
where J(ω) is the spectral density of the environment.

• ν(τ) =
∫∞

0 dωJ(ω) coth( ℏω
2kBT

)cos(ωτ), noise-kernel.

• η(τ) =
∫∞

0 dωJ(ω) sin(ωτ), dissipation kernel.

• ∆2 = − 2
M

∫∞
0 dτη(τ) cos(Ωτ), the square of the shifted natural frequency of the particle.

• γ = 2
MΩ

∫∞
0 dτη(τ) sin(Ωτ), damping rate due to dissipation effects.

• D = 1
ℏ
∫∞

0 dτν(τ) cos(Ωτ), scattering constant analogous to Λ in the previous section.

• f = − 1
MΩ

∫∞
0 dτν(τ) sin(Ωτ), also represents decoherence but usually negligible, especially at

high temperatures.

It can be shown that dispersion in position may be given by (∆X̂)2(t) = D
2m2γ2 t [12] [31] [18]. The

ensemble width ∆X̂(t) (the variance of the operator X̂ with respect to the state ρ̂St
) therefore scales

asymptotically as
√
t which is the scaling behavior seen in classical Brownian motion, hence the

name QBM [31]. Notice that in the regime where dissipation affects, γ, and low-temperature effects,
f , may be neglected (1.118) is approximately the collisional decoherence master equation seen in
(1.112), but now with a QSHO self-Hamiltonian for the system S. However, if the mass of the S
is large enough, then ĤS may be approximated by a free-particle Hamiltonian. We, therefore, see
that collisional decoherence (1.107) is just a special case of the QBM model (1.118). It is in this
sense that the interaction von Neumann (quantum measurement regime [31]) interaction Hamiltonian
HI = X̂ ⊗

∑
i ciQ̂i, which will be the regime of focus for the main work in this thesis, is seen as

physically viable. i.e. in the sense that ĤI ≈ Ĥtot, where Ĥtot is the total QBM Hamiltonian for
appropriate time domains.

1.6.3 Multipartite Open Quantum Systems

Let HS ⊗
⊗N

k=1 HEk be some arbitrary tensor product Hilbert space. Let us consider a separa-
ble density operator as the initial state of some multipartite quantum system evolving in S

(
HS ⊗⊗N

k=1 HEk

)
, namely

ρ̂ = ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0 ∈ S

(
HS ⊗

N⊗
k=1

HEk

)
. (1.119)

Here we consider a quantum system S interacting with N macroscopic environments Ek; we write
the subscript 0 in Ek0 in order to emphasize that this is the initial state of the kth environment Ek,
similarly, we use the subscript S0 to highlight the initial state of the system S. We will assume that
the time evolution of (1.119) lies within the quantum-measurement limit regime [31], i.e. Ĥtot ≈ Ĥint.
Let us assume a von Neumann type interaction Hamiltonian (this definition is taken from [18]). i.e.

Ĥint = X̂ ⊗
N∑
k=1

gkB̂k (1.120)
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where the operators X̂ and B̂k above are respectively the position operator and some arbitrary ob-
servable; each acting on its respective Hilbert space, i.e. all of the B̂k act on different Hilbert spaces.
The constants gk are coupling strengths between the position operator X̂ of S and the observable B̂k

of the kth environment Ek.The corresponding time evolution operator is therefore

Ût = e−itX̂⊗
∑N

k=1
gkB̂k . (1.121)

We evolve our total initial state using the evolution operator (1.121).

ρ̂t =
(
e−itX̂⊗

∑N

k=1
gkB̂k

)
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

(
eitX̂⊗

∑N

k=1
gkB̂k

)
. (1.122)

We will now do something which is divergent from the methods applied up until now for the study of
quantum open systems. Rather than trace out all of the environmental degrees of freedom, we shall
be tracing out only a subset of these. i.e. we shall be studying the state of the subsystem formed
by the system S and the first NE environments. We shall take the partial trace of the time-evolved
density operator (5.4) over the remaining ME := N −NE environments. We present this partial trace
as a lemma.

Lemma 1.6.1 (Multiple Partial Traces)

TrENE +1,ENE +2,...,EN

{
ρ̂t
}

= UNE ,t

(
Et
(
ρ̂s
)

⊗
NE⊗
k=1

ρ̂E
k
0

)
. (1.123)

Where
Un,t

(
Â
)

:= e−itX̂⊗Ŝn
(
Â
)
eitX̂⊗Ŝn (1.124)

Ŝn :=
n∑
k=1

gkB̂k (1.125)

and
EME
t {σ̂} :=

∫ ∫
⟨x|σ̂|y⟩ΓME

(t, x, y)|x⟩⟨y|dxdy. (1.126)

where

ΓME
(t, x, y) :=

N∏
k=NE+1

Trk

{
e−itxgkB̂k ρ̂E

k
0 eitygkB̂k

}
(1.127)

ME = N −NE , the number of traces being taken in equation (1.127).

Proof.
TrENE +1,ENE +2,...,EN

{
ρ̂t
}

= (1.128)

TrENE +1,ENE +2,...,EN

{
e−itX̂⊗

∑N

k=1
gkB̂k

(
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

)
eitX̂⊗

∑N

k=1
gkB̂k

}
= (1.129)
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UNE ,t

(
TrENE +1,ENE +2,...,EN

{
e

−itX̂⊗
∑N

k=NE +1
gkB̂k

(
ρ̂S0 ⊗

N⊗
k=NE+1

ρ̂Ek
0

)
e

itX̂⊗
∑N

k=NE +1
gkB̂k

} NE⊗
k=1

ρ̂Ek
0

)
(1.130)

Let us now use the generalized eigenvectors of X̂ in order to write ρ̂S =
∫ ∫

KS(x, y)|x⟩⟨y|dxdy where
KS(x, y) = ⟨x|ρ̂S |y⟩. Using the latter,

e
−itX̂⊗

∑N

k=NE +1
gkB̂k

(
ρ̂S0 ⊗

N⊗
k=NE+1

ρ̂E
k
0

)
e
itX̂⊗

∑N

k=NE +1
gkB̂k = (1.131)

∫ ∫
KS(x, y)|x⟩⟨y|

(
e

−itx
∑N

k=NE +1
gkB̂k

(
N⊗

k=NE+1
ρ̂E

k
0

)
e
ity
∑N

k=NE +1
gkB̂k

)
dxdy = (1.132)

∫ ∫
KS(x, y)|x⟩⟨y| ⊗

N⊗
k=NE+1

e−itxgkB̂k ρ̂E
k
0 eitygkB̂kdxdy. (1.133)

Furthermore

TrENE +1,ENE +2,...,EN

{∫ ∫
KS(x, y)|x⟩⟨y| ⊗

N⊗
k=NE+1

e−itxgkB̂k ρ̂E
k
0 eitygkB̂kdxdy

}
= (1.134)

∫ ∫
KS(x, y)|x⟩⟨y|TrENE +1,ENE +2,...,EN

{ N⊗
k=NE+1

e−itxgkB̂k ρ̂E
k
0 eitygkB̂k

}
dxdy = (1.135)

∫ ∫
KS(x, y)ΓME

(t, x, y)|x⟩⟨y|dxdy = EME
t

(
ρ̂S0

)
(1.136)

Finally, using (1.130) and (1.136), we have

(1.130) = UNE ,t

(
EME
t

(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂E
k
0

)
(1.137)

The density operators (1.137) describe a simple case of a multipartite open quantum system. We
call them simple because there are no interactions between the environmental degrees of freedom.
Such states are useful for the description of multiple observer monitoring states; these are states
where each of the environmental degrees of freedom in (1.137) represent some physical system that
the kth observer conducts measurements on in order to indirectly learn about the system S [28]. The
dynamics of states of the form (1.137) will be the primary focus of this thesis; in particular, we shall
be interested in answering the question of whether or not such a state converges to a so-called SBS
state within some time domain of interest (See Chapters 4 and 5).
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Chapter 2

Quantum Maps, Distance
Measures, and Inequalities

This chapter is dedicated to introducing and motivating many of the tools that will be needed
in proving the main results of this thesis. The three topics to be discussed here are quantum maps,
distance measures, and relevant inequalities. Quantum maps play a key role in open quantum systems;
these are maps that take density operators as inputs and return density operators as outputs whilst
accounting for effects such as dissipation, decoherence, unitary evolution, and even a combination of
all these. In close quantum systems, one encounters such maps when solving the LV equation. The
solutions to this equation are a density operator which has been unitarily evolved from some initial
state (1.30); such evolution is a basic example of a quantum map. In open quantum systems the
notion of a quantum map is more nuanced due to its various applications. We will begin this chapter
by formally defining the notion of a quantum map and discussing physical motivations. We will then
continue with a discussion on various norm and metric inequalities that we shall be needing to study
proximity between density operators being evolved by different quantum maps respectively; this will
play a key role in the rest of this thesis.

2.1 Quantum Maps

Let us right away define a quantum map. We follow closely the definition presented in [9] (where the
terminology quantum operation is used in lieu of quantum map.).
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Definition 2.1.1 (Quantum Map)

Let H1 and H2 be two arbitrary Hilbert spaces. We define a quantum map E as a map from
the set of density operators of the input space S

(
H1
)

to the set of density operators for the
output space S

(
H2
)
, with the following three axiomatic properties.

• A1: Tr
{
E
(
ρ̂
)}

is the probability that the process E occurs, when the ρ̂ is in the initial
state. Thus, 0 ≤ Tr

{
E
(
ρ̂
)}

≤ 1 for any state ρ̂.

• A2: E is a convex-linear map on the set of density operators, i.e. for a probability
distribution {pi},

E
(∑

i

piρ̂i

)
=
∑
i

piE
(
ρ̂i
)

(2.1)

• A3: E is a completely positive map. i.e., if E maps density operators of S
(
H1
)

to
density operators of S

(
H2
)
, then E

(
Â
)

must be positive for any positive operator Â.
Furthermore, let H3 a third arbitrary Hilbert space. It must then be true that

(
I⊗E

)(
Â
)

is positive for any positive operator Â ∈ B
(
H1 ⊗ H3

)
where I is the identity map on

B
(
H1
)
.

In mundane terms, quantum maps are maps that respect the rules of quantum mechanics. Perhaps
with the exception of the second half of A3, all of the properties in Definition 2.1.1 are quite natural.
To understand the completely positive criteria let us first convince ourselves that complete positivity is
more restrictive than positivity. Let ρ̂ ∈ S

(
C2), using the basis

{∣∣0〉〈0∣∣, ∣∣1〉〈1∣∣} we have the following
representation

ρ̂ = a
∣∣1〉〈1∣∣+ b

∣∣0〉〈0∣∣+ c
∣∣1〉〈0∣∣+ c∗∣∣0〉〈1∣∣. (2.2)

From basic linear algebra, we know that a matrix and its transpose have the same eigenvalues, T
(
ρ̂
)

:=
ρ̂T is therefore also a positive operator. The transpose of a matrix is hence a positive map. Now,
consider the density operator

σ̂ := 1
2

(∣∣00
〉〈

00
∣∣+
∣∣00
〉〈

11
∣∣+
∣∣11
〉〈

00
∣∣+
∣∣11
〉〈

11
∣∣) ∈ S

(
C2 ⊗ C2) (2.3)

where
∣∣00
〉

is shorthand for
∣∣0〉⊗

∣∣0〉. Acting on (2.3) with the map T ⊗I, which executes a transpose
in the subspace pertaining to the left-hand side of the tensor products

∣∣0〉⊗
∣∣0〉 ... etc, while I is the

identity map of the complementary subspace,

(
T ⊗ I

)(
σ̂
)

= 1
2

(∣∣00
〉〈

00
∣∣+
∣∣10
〉〈

01
∣∣+
∣∣01
〉〈

10
∣∣+
∣∣11
〉〈

11
∣∣). (2.4)

This matrix is known to have eigenvalues 1
2 and − 1

2 , which means that it is not a positive matrix.
We, therefore, see that complete positivity is a stronger condition than positivity. We have yet
to motivate why complete positivity is compulsory. The physical motivation is this. In quantum
open systems, dynamics will be generated by quantum maps. Consider some time-dependent trace-
preserving quantum map Et, i.e. this map will be a bonafide trace-preserving quantum map for all
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t > 0. Let this map evolve a quantum system S1. One can embed such an open quantum system into
a larger quantum open system, now including another system S2 which is static in time and does not
interact with S1. The total dynamics of this larger quantum open system will now be described by
Et ⊗ I where I is the identity quantum map of the subsystem S2. The map Et ⊗ I will of course be
expected to map the density operator to another density operator, it will be a positive map, hence
the necessity for complete positivity.

In the previous chapter, we alluded to the fact that environmentally induced non-unitary dynamics
(1.69) characterized by a family of identity-resolving operators (1.76), called Kraus operators, consti-
tutes a quantum map. We have already seen examples of such maps and have seen that they respect
the rules of quantum mechanics. Nevertheless, it would be a worthwhile exercise to prove that the
axioms A1 − A3 of Definition 2.1.1 are satisfied by maps generated by a family of Kraus operators
(1.75).

Let H be some arbitrary Hilbert space and let ρ̂ ∈ S
(
H1
)
. Now, let

{
M̂i

}
i

∈ B
(
H1
)

be a family
of Kraus operators, i.e.

∑
i M̂†

iM̂i = I1, then the map E
(
ρ̂
)

:=
∑
i M̂iρ̂M̂†

i satisfies A1 − A3 of
Definition 2.1.1. A1 is trivial to verify; the key element in the proof is the cyclicity of the trace (1.33).

Tr{E
(
ρ̂
)
} = Tr

{∑
i

M̂iρ̂M̂†
i

}
=
∑
i

Tr
{

M̂iρ̂M̂†
i

}
=
∑
i

Tr
{

M̂†
iM̂iρ̂

}
= (2.5)

Tr
{∑

i

M̂†
iM̂iρ̂

}
= Tr

{
ρ̂
}

= 1. (2.6)

Proving A2 is also simple. Let
{
pi, ρ̂i

}
i

be an ensemble of density operators, then

E
(∑

i

piρ̂i

)
=
∑
j

M̂j

(∑
i

piρ̂i

)
M̂†

j =
∑
i

pi
∑
j

M̂jρ̂iM̂
†
j =

∑
i

piE
(
ρ̂i
)
. (2.7)

Finally, and most importantly, we will prove A3. We will first prove positivity. Let
∣∣ψ〉 ∈ H1,

〈
ψ
∣∣∑

i

M̂iρ̂M̂†
i

∣∣ψ〉 =
∑
i

〈
ψ
∣∣M̂iρ̂M̂†

i

∣∣ψ〉 =
∑
i

〈
ϕi
∣∣ρ̂∣∣ϕi〉 ≥ 0 (2.8)

where
∣∣ϕi〉 is the image of M̂ acting on

∣∣ψ〉. Owing to the positivity of ρ̂, all of the elements of the sum∑
i

〈
ϕi
∣∣ρ̂∣∣ϕi〉 will be positive, leading us to conclude that E

(
ρ
)

is positive (2.8). To show complete
positivity we first let H3 be an arbitrary Hilbert space and let

∣∣η〉 ∈ B
(
H1 ⊗ H3

)
. Furthermore,

consider an arbitrary positive operator Â ∈ B
(
H1 ⊗ H3

)
. Then,

〈
η
∣∣(I ⊗ E

)(
Â
)∣∣η〉 =

〈
η
∣∣∑

i

(
I1 ⊗ M̂i

)
Â
(
I1 ⊗ M̂†

i

)∣∣η〉 = (2.9)

∑
i

〈
η
∣∣(I1 ⊗ M̂i

)
Â
(
I1 ⊗ M̂†

i

)∣∣η〉 (2.10)

Letting
∣∣χi〉 :=

(
I1 ⊗ M̂i

)∣∣η〉 ( a ket in H1 ⊗ H3) we see that (2.10) is just∑
i

〈
χi
∣∣Â∣∣χi〉 ≥ 0 (2.11)
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which is obviously a quantity greater than or equal to one owing to the positivity of Â. Since the
family of identity-resolving operators M̂i were taken to be general, we have actually proven that all
trace-preserving (also known as quantum channels [9]), identity-resolving families of operators

{
M̂i

}
i

generate a quantum map. We have therefore proven one direction of the following theorem.

Theorem 2.1.1 (Quantum Channel Representation)

A trace-preserving map E is a quantum channel (i.e. trace-preserving) if and only if

E (ρ̂) =
∑
i

M̂iρ̂M̂†
i , (2.12)

for some set of operators
{

M̂i

}
i

which map the input Hilbert to the output Hilbert space, and∑
i M̂†

iM̂i = I

For the cases where we consider maps E which do not preserve the trace, Theorem 2.1.1 may be
adapted to the following.

Theorem 2.1.2 (Quantum Map Representation)

A map E is a quantum map if and only if

E (ρ̂) =
∑
i

M̂iρ̂M̂†
i , (2.13)

for some set of operators
{

M̂i

}
i

which map the input Hilbert space to the output Hilbert
space, and 0 ≤

∑
i M̂†

iM̂i ≤ I

Note that the case where there is only one operator M̂i pertains to the unitary map case. i.e.
if there is only one M̂i, namely M̂, and we require that M̂†M̂ = I, then forcibly M̂ will be a
unitary operator. In section 1.5 we saw that open systems evolve non-unitarily via the quantum map
generated by the Kraus operators obtained from the partial tracing over the environmental degrees of
freedom E. The Kraus operators were shown to have the identity resolution property (1.76); therefore
preserving positivity and the unit trace property. More generally, the family {Mi}i does not need to
be countable. i.e. we could have a quantum map defined as F

(
ρ̂
)

:=
∫

M̂xρ̂M̂†
xdx. Such a map may

be easily shown to preserve the unit trace and positivity properties.

GKSL Generator

There are cases where a time-dependent quantum map Et, such as the ones generating non-unitary
evolution discussed in the previous section, will satisfy the following semigroup properties.

• Et is strongly continuous.

• EtEs = Et+s, for al t, s ≥ 0
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When the above properties are satisfied, one may invoke the celebrated Hille-Yosida theorem [44]
which states that there exists a densely defined generator L defined as

Lρ̂ := lim
t→0

1
t

(
Et
(
ρ̂
)

− ρ̂
)

(2.14)

such that
∂tEt = LEt (2.15)

together with the initial condition limt→0 Etρ̂ = ρ̂. For unitary dynamics the generators L will just be
those generated by some Hamiltonian. However, in the non-unitary case L may be the GKSL super
operator that we have already seen in (1.85). i.e.

L
(
...
)

:= −i
[
ĤS , ...] +

∑
i

γi

(
L̂i
(
...
)
L̂†
i − 1

2

{
L̂†
i L̂i, ...

})
. (2.16)

We now see the tightly knitted connection between the GKSL equation and quantum maps, and
may further appreciate the significant role that quantum maps play when modeling general quantum
dynamics.

2.2 Quantum Map Examples

We will now present various examples of quantum maps, some of which we have seen already,
highlighting their quantum map properties, and others which we will see in what is to come.

2.2.1 Phase Kick Decoherence

Let HS = C2, and consider the an arbitrary state
∣∣ψ〉 ∈ C2. i.e.

∣∣ψ〉 = a
∣∣0〉 + b

∣∣1〉 where
∣∣0〉 and∣∣1〉 are the eigenvetcors of the Pauli matrix σ̂z. Such a state may experience an environmental kick

emanating from environmental particles which interact deterministically with S. Such a kick may be
generated by the unitary operator R̂z(θ) := e− iθ

2 σ̂z ; in this case the kick is a rotation along the z-axis
of the Bloch-Sphere by θ degrees [9] [15]. Assuming that some experimentalist is taking a measurement
of S, subsequently after the phase kick, has no knowledge of the state of the environment interacting
with S. Furthermore, assume that the statistics of the parameter θ are µθ = 0 and σθ =

√
2λ. The

experimentalist would then be conducting measurements on the state

ρ̂λ := 1√
4πλ

∫ ∞

−∞
R̂z(θ)

∣∣ψ〉〈ψ∣∣R̂†
z(θ)e− θ2

4λ dθ. (2.17)

Notice that (2.17) has the structure which is necessary and sufficient to generate a quantum map per
Theorem 2.1.1. In this case, the Kraus operators consists of the θ dependent family e− θ2

8λ R̂z(θ), where
θ ∈ R. Notice that the identity resolution property is easily verified.

1√
4πλ

∫ ∞

−∞
R̂z(θ)R̂†

z(θ)e− θ2
4λ dθ =

( 1√
4πλ

∫ ∞

−∞
e− θ2

4λ dθ
)
I = I (2.18)
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Furthermore, it can easily be shown that

ρ̂λ = |a|2
∣∣0〉〈0∣∣+ |b|2

∣∣1〉〈1∣∣+ ab∗e−λ∣∣1〉〈0∣∣+ a∗be−λ∣∣0〉〈1∣∣ (2.19)

which clearly exhibits the damping of the off-diagonal terms, a phenomenon characteristic of deco-
herence. If λ is large this in turn will mean that the randomness in the environment is large; if
λ is arbitrarily large all quantumness (Definition 1.3.4) is wiped out prior to the experimentalist’s
interacting with S.

2.2.2 Colisional Decoherence as a Quantum Semigroup

In the previous chapter, we studied collisional quantum decoherence (1.104). Clearly, such a model
induces time evolution which follows the rules of quantum mechanics. Therefore, (1.104) should be
representable in the form required by Theorem 2.1.1. Let us start by rewriting (1.104) in a more
suggestive way. ∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2∣∣x〉〈x′∣∣dxdx′ = (2.20)

∫ ∫
ϕ(x)ϕ∗(x′)

(∫
R

√
π

tΛe
− π2

tα ξ
2
e−2πiξ(x−x′)dξ

)∣∣x〉〈x′∣∣dxdx′ (2.21)

√
π

tΛ

∫
R
e− π2

tα ξ
2

(∫ ∫
ϕ(x)ϕ∗(x′)e−2πiξ(x−x′)∣∣x〉〈x′∣∣dxdx′

)
dξ (2.22)

√
π

tΛ

∫
R
e− π2

tα ξ
2

(
e−2πiξX̂

∫ ∫
ϕ(x)ϕ∗(x′)

∣∣x〉〈x′∣∣dxdx′e2πiξX̂

)
dξ (2.23)

√
π

tΛ

∫
R
e− π2

tα ξ
2

(
e−2πiξX̂∣∣ϕ〉〈ϕ∣∣e2πiξX̂

)
dξ (2.24)

∫
R

(
4

√
π

tΛe
− π2

2tα ξ
2
e−2πiξX̂

)∣∣ϕ〉〈ϕ∣∣( 4

√
π

tΛe
− π2

2tα ξ
2
e2πiξX̂

)
dξ (2.25)

where
∣∣ϕ〉 :=

∫
ϕ(x)

∣∣x〉dx.
The density operator (2.24) is now confirmed as the non-unitary evolution of the pure state

∣∣ϕ〉〈ϕ∣∣
by the quantum map defined by the Kraus operators 4

√
π
tΛe

− π2
2tα ξ

2
e−2πiξX̂. The density operator (2.24)

is very much like the density operator we saw in the previous example ( 2.17) in the sense that they
are both averages of unitary dynamics (which result in non-unitary dynamics).

2.2.3 POVM

We have already seen plenty examples of how the environment induces non-unitary dynamics onto
some system of interest S. It is an inherent property of measurement processes for the measurer to
disturb the system being measured. For classical systems, these disturbances are often inconsequential.
However, in quantum mechanics, one works with systems whose observable properties are much more
susceptible to disturbance. Measurement is hence naturally described by quantum maps generated
by a Positive Operator Valued Measure (POVM) defined below. The difference between a POVM and
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a family of Kraus operators is simply that the Kraus operators generating the POVM are positive
semidefinite operators. From the point of view of POVM measurement theory, one may therefore
consider environmentally induced decoherence and/or dissipation as a form of measurement performed
by the environment, we will call this environmental monitoring. A subset of these POVM corresponds
to the case of Projector-Valued Measures (PVM). The theory of quantum measurement as developed
by von Neumann utilizes solely PVM [18].

Definition 2.2.1 (POVM)

Consider an arbitrary Hilbert space H . A POVM is a set of semi-definite operators
{

M̂†
iM̂i

}
i

acting in H that sum to the identity operator. i.e.∑
i

M̂†
i M̂i = IH (2.26)

The POVM may consist of an uncountable set of semi-definite operators as well. In such a
case the analogous set of operators, e.g. M̂x (x ∈ R) must meet the same constraint. i.e.∫

M̂†
xM̂xdx = IH (2.27)

Definition 2.2.2 (Quantum Measurement)

Consider a POVM {M̂†
iM̂i}i acting in some Hilbert space of arbitrary dimension. Furthermore,

consider a density operator ρ̂ which acts in the same Hilbert space. Given a quantum system
in state ρ̂, the theory of quantum probability treats the M̂†

iM̂i as events, while the traces
pi := Tr{ρ̂M̂†

iM̂i} are postulated to be the probabilities of the i the event occurring after
conducting a measurement on the system designed to read out the events modeled by the
POVM. The operators M̂i are therefore Kraus operators of a quantum map. If one conducts
a measurement on the quantum state ρ̂ and the outcome is that which is indexed by i, then
the post-measurement state is postulated to be

M̂iρ̂M̂†
i

Tr
{

M̂iρ̂M̂†
i

} (2.28)

The state above is the resulting state assuming that one has "read out" the measurement.
However, if one does not read out the results of the measurement, what one has is a mixture

∑
i

pi
M̂iρ̂M̂†

i

Tr
{

M̂iρ̂M̂†
i

} (2.29)

Given that pi = Tr{Êiρ̂}, the unread state of the system is

∑
i

pi
M̂iρ̂M̂†

i

Tr
{

M̂iρ̂M̂†
i

} =
∑
i

Tr
{

M̂iρ̂M̂†
i

} M̂iρ̂M̂†
i

Tr
{

M̂iρ̂M̂†
i

} =
∑
i

M̂iρ̂M̂†
i . (2.30)
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The map (2.30) is clearly a quantum map.

Definition 2.2.3 (von Neumann Measurement)

The theory of von Neumann Measurement is just the theory of quantum measurement described
above but specialized to the case where the POVM in question are Projector Valued Measures
(PVM).

2.2.4 Weak Measurement as an Example of POVM Measurement

An observer monitoring the system S may have at their disposal a POVM that measures the
spectrum of the position operator X̂, however, due to resolution limitations one expects that any
realizable POVM will have finite precision. An example of a viable POVM for estimating the position
of some quantum mechanical object can be constructed from Gaussian functions as follwos.

M̂q = (2πσ2)−1/4
∫
e− (q−x′)2

4σ2
∣∣x′〉〈x′∣∣dx′. (2.31)

Note that this family of projectors forms a resolution of the identity.∫
M̂†

qM̂qdq = I.

We will refer to the parameter σ−1 as the measurement precision. It can be shown that limσ→0 M
†
qMq =∣∣q〉〈q∣∣ and limσ→∞ M†

qMq = I in the weak sense; these are the max and min precision limits. For
finite and/or large values of σ we enter what is known as the weak measurement regime. For a detailed
discussion regarding weak measurement theory please see [55]; the interested reader may also look at
the theory of Gentle Measurement [11] which generalizes weak measurement. We will be interested
in measurements that are approximately non-disturbing, for the case of continuous variables we will
adopt the Gentle Measurement Principle [11] to define approximate non-disturbance. i.e. a measure-
ment is non-disturbing if a set of states can be distinguished with high probability; i.e. they can,
in principle, be distinguished by a measurement that does not disturb the state. Indeed, for a given
infinite dimensional state matrix ρ̂ with kernel K, using the POVM {M̂q}q we have

∫
M̂†

qρ̂M̂qdq = (2πσ2)− 1
2

∫ {∫ ∫
e− (q−x)2

4σ2 e− (q−y)2

4σ2 K(x, y)
∣∣x〉〈y∣∣dxdy}dq = (2.32)

=
∫ ∫ {

(2πσ2
ms)− 1

2

∫
e− (q−x)2

4σ2 e− (q−y)2

4σ2 dq

}
K(x, y)

∣∣x〉〈y∣∣dxdy = (2.33)

=
∫ ∫

e− (x−y)2

8σ2 K(x, y)|x⟩⟨y|dxdy ≈
∫ ∫

K(x, y)|x⟩⟨y|dxdy σ → ∞ (2.34)

σ need not be infinite for the latter approximation to be valid, it need only be large enough to maintain
the decoherence kernel above approximately constant within the support of K(x, y). The larger σ is
the weaker the effects of the quantum map generated by the Kraus operator M̂q will be.
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2.3 Quantifying Disturbance/Noise with the Trace Distance

To quantify how much a quantum map disturbs an arbitrary quantum state, we will be using the
trace distance. We will define the trace distance shortly, but before this, we need to define the trace
norm.

Definition 2.3.1 (Trace Norm)

Let H be an arbitrary Hilbert space and let ρ̂ ∈ S
(
H
)

. Then, the trace norm of ρ̂ is defined
as ∥∥ρ̂

∥∥
1 := Tr

{√
ρ̂†ρ̂

}
(2.35)

Now we define the trace distance.

Definition 2.3.2 (Trace Distance)

Let H be an arbitrary Hilbert space and let ρ̂ and σ̂ ∈ S
(
H
)
. The trace distance between

the density operators ρ̂ and σ̂ is defined as follows.

D
(
ρ̂, σ̂

)
:= 1

2
∥∥ρ̂ − σ̂

∥∥
1 (2.36)

Although structurally simple, the trace distance is generally intractable for the same reasons
solving the Schrödingers question is (1.1), i.e. the complexity of the eigenvalue problem. To see this
more clearly let us look back at equation (1.49) and the preceding discussion. For the case of density
operators, the trace is equal to the trace norm so the situation is simpler because we do not need to
worry about taking a square root of an operator as required by Definition 2.3.1. In the best of cases,
we know the entire spectrum and we are done! However, differences of density operators ρ̂ − σ̂ will
not be positive operators in general and will yield further complexity when computing the trace norm.
In fact, even if we know the spectral decomposition of ρ̂ and σ̂ respectively, this does not mean that
we will know the spectral decomposition of ρ̂ − σ̂, i.e. not unless

[
ρ̂, σ̂

]
= 0. ρ̂ − σ̂ is also a trace

class operator, the spectral theory for compact operators, therefore, tells us that there exists a basis{∣∣ϕi〉}i that diagonalizes ρ̂ − σ̂. With such a basis it can be shown that

∥∥ρ̂ − σ̂
∥∥

1 =
∑
i

|λi
(
ρ̂ − σ̂

)∣∣. (2.37)

Finding the eigenvectors
{∣∣ϕ〉

i

}
i

is nevertheless a complicated affair, as already discussed in Chapter 2,
and should be avoided if possible. The only case for which the trace distance may be easily calculated
is when both ρ̂ and σ̂ are pure states. We present this result as a lemma.
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Theorem 2.3.1 (Trace Distance of Two Pure States [9])

Consider two pure states
∣∣ψ〉〈ψ∣∣ and

∣∣ϕ〉〈ϕ∣∣. Their trace distance is the following.

D
(∣∣ψ〉〈ψ∣∣, ∣∣ϕ〉〈ϕ∣∣) =

√
1 −

∣∣〈ψ∣∣ϕ〉∣∣2 (2.38)

In the finite-dimensional case, dim
(
H
)
< ∞, it is helpful to note that the trace norm is equivalent

any other Schatten norm, e.g. the Hilbert-Schmidt norm [9].

Definition 2.3.3 (Schattern Norms [47])

Let H be an arbitrary Hilbert space and let ρ̂ ∈ S
(
H
)
. The p−Schatten norm is defined as.

∥∥ρ̂
∥∥
p

:= p

√
Tr

{(√
ρ̂†ρ̂

)p}
(2.39)

An interesting property of the Trace Idelas [47] corresponding to the respective Schatten norms∥∥...∥∥
p

is that they satisfy an operator version of Hölders inequality. Namely, the following theorem.

Theorem 2.3.2 (Schatten-Hölder)

Let H be an arbitrary Hilbert space and let ρ̂ ,σ̂ ∈ S
(
H
)
. Then,

∥∥ρ̂σ̂
∥∥

1 ≤
∥∥ρ̂
∥∥
q

∥∥σ̂
∥∥
p

(2.40)

whenever 1
p + 1

q = 1.

These Schatten norms induce a metric, and for the finite-dimensional case, they are all equivalent
in the following sense. Let ρ̂ and σ̂ be two finite-dimensional density operators. Then, for all p and
q, there exists constants C1 and C2 such that

C1∥ρ̂ − σ̂∥p ≤ ∥ρ̂ − σ̂∥q ≤ C2∥ρ̂ − σ̂∥p. (2.41)

The constants depend on p, q and on the dimension of the Hilbert space the operators ρ̂ and σ̂ act
in. The Hilbert-Schmidt norm is the case where p = 2. i.e.

∥∥ρ̂
∥∥

2 =
√
Tr
{

ρ̂†ρ̂
}

. Notice that even if
we do not have knowledge of the spectral decomposition of the operator ρ̂, we may nevertheless easily
compute ρ̂†ρ̂ and subsequently calculate the sum of the diagonal terms in order to obtain the trace;
so long as we have a representation of ρ̂, it is relatively simple to proceed. This equivalence between
the Schatten norms in the finite-dimensional case allows us to estimate trace norms without worrying
about the square root in the definition of the trace norm. This approach is unfortunately not viable
for the infinite-dimensional case; when dim

(
H
)

= ∞ there is no longer equivalence amongst Schatten
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norms. What is more restrictive is that for an arbitrary trace class operator Â,

∥∥Â
∥∥ ≤ ... ≤

∥∥Â
∥∥

2 ≤
∥∥Â
∥∥

1. (2.42)

This means that we have little room to estimate the trace norm; any of the popular trace norm bounds
will require us to estimate an equivalently difficult quantity. One of the most popular bounds for the
trace distance is the following [9]

1 −
√
F
(
ρ̂, σ̂

)
≤ 1

2
∥∥ρ̂ − σ̂

∥∥
1 ≤

√
1 − F

(
ρ̂, σ̂

)
(2.43)

where F
(
..., ...

)
is the quantum fidelity defined as follows.

Definition 2.3.4 (Quantum Fidelity)

Let H be an arbitrary Hilbert space and let ρ̂ ,σ̂ ∈ S
(
H
)
. The quantum fidelity between ρ̂

and σ̂ is defined as
F
(
ρ̂, σ̂

)
:=
∥∥√ρ̂

√
σ̂
∥∥2

1 (2.44)

or equivalently
F
(
ρ̂, σ̂

)
:= Tr

{√√
ρ̂σ̂
√

ρ̂
}2

(2.45)

Notice that the quantum fidelity is no simpler to compute than the trace distance in general.
However, when at least one of the states ρ̂, σ̂ is pure, the calculation is simpler. i.e.

F
(∣∣ψ〉〈ψ∣∣, σ̂) = |

〈
ψ
∣∣σ̂∣∣ψ〉|. (2.46)

The fidelity for two pure states is therefore

F
(∣∣ψ〉〈ψ∣∣, ∣∣ϕ〉〈ϕ∣∣) = |

〈
ψ
∣∣ϕ〉|2. (2.47)

2.3.1 Contractivity of Quantum Maps

An important result exhibiting the effects of quantum maps on a trace distance is

Theorem 2.3.3 (Contractivity of Quantum Maps)

Let ρ̂ and σ̂ be two density operators and E a quantum map acting on these states. Then,

D
(
E (ρ̂),E (σ̂)

)
≤ D

(
ρ̂, σ̂

)
(2.48)

2.3.2 Disturbance Due to a Quantum Map

How can one tell if a quantum map preserves information? Assume that we have some density
operator ρ̂ ∈ S

(
H
)
, H arbitrary, and some quantum map E : S

(
H
)

→ S
(
H
)
. If the trace distance

D
(
ρ̂,E (ρ̂)

)
= 0, then this means that the operators ρ̂ and ρ̂ are indistinguishable!
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Proof. Let D
(
ρ̂,E (ρ̂)

)
= 0 and assume that ρ̂ ̸= E (ρ̂), i.e. ρ̂ − E (ρ̂) ̸= 0 ( the zero operator acting

in H ). Note that D
(
ρ̂,E (ρ̂)

)
= 0 implies that∑

i

∣∣λi(ρ̂ − E (ρ̂)
)∣∣ = 0 (2.49)

This implies that all of the eigenvalues λi
(
ρ̂ − E (ρ̂)

)
= 0. Owing to the fact that the operator

ρ̂ − E (ρ̂) ̸= 0 is trace class, we may write any vector in H as a linear combination of the eigenvectors
of ρ̂ − E (ρ̂) (call them

{∣∣ϕi〉}i). This means that for any
∣∣ψ〉 ∈ H

(
ρ̂ − E (ρ̂)

)∣∣ψ〉 =
(
ρ̂ − E (ρ̂)

)∑
i

ci
∣∣ϕi〉 =

∑
i

0 × ci
∣∣ϕi〉 = 0. (2.50)

Hence
ρ̂
∣∣ψ〉 = E (ρ̂)

∣∣ψ〉, (2.51)

which is a contradiction! We hence conclude that D
(
ρ̂,E (ρ̂)

)
= 0 implies that ρ̂ = E

(
ρ̂
)
.

For the finite-dimensional case, one may always utilize the Hilbert-Schmidt distance in lieu of the
trace-distance in order to forgo the eigenvalue problem. For the infinite-dimensional case, we will have
to get creative.

Disturbing pure states

A relatively simple case of disturbance estimation pertains to the case where the initial state is pure
and the quantum map in question is trace-preserving. i.e. we begin with some density operator of
the form

∣∣ψ〉〈ψ∣∣. To estimate how much E disturbs
∣∣ψ〉〈ψ∣∣ let us compute the trace distance. Here,

using (2.43),

D
(∣∣ψ〉〈ψ∣∣,E (∣∣ψ〉〈ψ∣∣)) ≤

√
1 − F

(∣∣ψ〉〈ψ∣∣,E (∣∣ψ〉〈ψ∣∣)) =
√

1 −
∣∣〈ψ∣∣E (∣∣ψ〉〈ψ∣∣)∣∣ψ〉∣∣. (2.52)

Proof. All we need to show in order to prove the above is that F
(∣∣ψ〉〈ψ∣∣,E (∣∣ψ〉〈ψ∣∣)) =

∣∣〈ψ∣∣E (∣∣ψ〉〈ψ∣∣)∣∣ψ〉∣∣.
To this end, we will use (2.45).

F
(∣∣ψ〉〈ψ∣∣,E (∣∣ψ〉〈ψ∣∣)) = Tr

{√√∣∣ψ〉〈ψ∣∣E (∣∣ψ〉〈ψ∣∣)√∣∣ψ〉〈ψ∣∣}2

= (2.53)

Tr

{√∣∣ψ〉〈ψ∣∣E (∣∣ψ〉〈ψ∣∣)∣∣ψ〉〈ψ∣∣}2

=
〈
ψ
∣∣E (∣∣ψ〉〈ψ∣∣)∣∣ψ〉Tr{√∣∣ψ〉〈ψ∣∣}2

=
∣∣〈ψ∣∣E (∣∣ψ〉〈ψ∣∣)∣∣ψ〉∣∣.

(2.54)

Quantum Maps that preserve eigenvectors

Perhaps the simplest case of disturbance estimation is the following. It could happen that the
quantum map in question, E , simply rotates the eigensubspaces of some density operator ρ̂ of interest.
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i.e. say ρ̂ has the spectral decomposition

ρ̂ =
∑
i

αi
∣∣ϕi〉〈ϕi∣∣ (2.55)

and define the quantum map E as follows.

E
(
ρ̂
)

=
∑
i

βi
∣∣ϕi〉〈ϕi∣∣ (2.56)

In this case
D
(
ρ̂,E

(
ρ̂
))

=
∑
i

|αi − βi|. (2.57)

Quantum map acting on a general mixed state

If we now consider an arbitrary initial mixed state, i.e. a density operator whose purity may be
less than one, things become drastically more difficult. For the infinite-dimensional case, there really
is no simple approach. As an example, let us return to the weak measurement case. Consider a
situation where the system being monitored S is described by a state undergoing decoherence. i.e.
let Et be some trace-preserving quantum map inducing decoherence. Let ρ̂ be some density operator
with kernel K. Assume that the effect of Et on ρ̂ is the following.

Et
(
ρ̂
)

=
∫ ∫

K(x, y)Γ(t(x− y))|x⟩⟨y|dxdy. (2.58)

Where Γ(t(x− y)) → 0 as |t(x− y)| → ∞. Now, recall that the weak measurement POVM quantum
map in this case can be shown to act as follows

Λ
(
Et
(
ρ̂
))

:=
∫

M̂†
qEt
(
ρ̂
)
M̂qdq =

∫ ∫
K(x, y)e− (x−y)2

8σ2 Γ(t(x− y))|x⟩⟨y|dxdy. (2.59)

To measure the disturbance induced by the quantum map Λ we must estimate∥∥∥Et(ρ̂)− Λ
(
Et
(
ρ̂
))∥∥∥

1
=
∥∥∥∫ ∫ K(x, y)Γ(t(x− y))(1 − e− (x−y)2

8σ2 )|x⟩⟨y|dxdy
∥∥∥

1
(2.60)

To proceed one would need to diagonalize the kernel K(x, y)Γ(t(x−y))(1−e− (x−y)2

8σ2 ) or use numerical
techniques to estimate the trace norm of such a kernel, a formidable task.

We now conclude this chapter, having introduced almost all of the theory necessary to build the
novel results of this thesis. In the following chapter we will begin to present original results; prior to
this we will introduce one final bit of crucial theory, i.e. the theory of Quantum State Discrimination
(QSD).
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Chapter 3

Asymptotic QSD for Countable and
Uncountable Mixtures

Quantum State Discrimination (QSD) is the problem of minimizing the error in distinguishing
between the elements of a mixture of density operators

∑
i piρ̂i. To understand what is meant by

distinguishing we must refer back to the concepts of a POVM and quantum measurement discussed
in the previous section (Definitions 2.2.1, 2.2.2, and 2.2.3). The QSD optimization problem [66] [72]
[25] [22] [23] may now be defined. Let H be an arbitrary Hilbert space and let H be the space of
density operators acting in H . Given a mixture of density operators,

ρ̂ =
N∑
i=1

piρ̂i (3.1)

where
∑N
i=1 pi = 1, the theory of QSD aims to find a POVM {Êl}Kl=1 ⊂ B(H ) ( K ≥ N , Êl = M̂†

lM̂l

where the M̂l are the corresponding kraus operators[31]) which resolves the identity operator of B(H ),
and minimizes the object below which we will be referring to as a probability error.

pE
{

{pi, ρ̂i}Ni=1, {M̂l

}K
l=1

}
:= 1 −

N∑
i=1

piTr
{

M̂iρ̂iM̂
†
i

}
(3.2)

To see what is the error that (3.2) measures let us consider the unread measurement state (2.30)
corresponding to the mixture

∑N
i=1 ρ̂i after having undergone a measurement generated by the POVM{

M̂†
iM̂i

}N
i=1.

N∑
j=1

M̂j

( N∑
i=1

piρ̂i

)
M̂†

j = (3.3)

N∑
i=1

piM̂iρ̂iM̂
†
i +

N∑
j=1

N∑
i;i ̸=j

piM̂jρ̂iM̂
†
j (3.4)

From the definition of POVM provided, it is clear that Tr
{∑N

j=1 M̂j

(∑N
i=1 piρ̂i

)
M̂†

j

}
= 1, hence
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from (3.3) and (3.4)

1 =
N∑
i=1

piTr
{

M̂iρ̂iM̂
†
j

}
+

N∑
j=1

N∑
i;i ̸=j

piTr
{

M̂jρ̂iM̂
†
j

}
(3.5)

The term Tr
{

M̂iρ̂iM̂
†
i

}
is the probability that the system modeled by the mixture (3.1) was in the

state ρ̂i given that the outcome of the measurement was the state
M̂i

(∑N

i=1
piρ̂i

)
M̂†

i

Tr
{

M̂i

(∑N

i=1
piρ̂i

)
M̂†

i

} , meaning

that
∑N
i=1 piTr

{
M̂iρ̂iM̂

†
i

}
is the probability that POVM chosen perfectyl discriminates between the

different ρ̂i of the mixture (3.1). The term 1 −
∑N
i=1 piTr

{
M̂iρ̂iM̂

†
i

}
, the probability error, is hence

the probability that the POVM fully fails to discriminate between the elements of the mixture (3.1).
Using (3.5) it may also be expressed as

N∑
j=1

N∑
i;i ̸=j

piTr
{

M̂jρ̂iM̂
†
j

}

In what follows we will just write pE in place of pE
{

{pi, ρ̂i}Ni=1, {M̂l

}K
l=1

}
as a shorthand when

the context is clear. With this notation, the QSD optimization problem is the problem of computing
the following minimum.

min
POVM

pE (3.6)

The QSD problem will be called fully solvable when minPOVM pE = 0.

In this Chapter we consider an Asymptotic QSD: let Ei,n be a family of completely positive linear
transformations, mapping density operators ρ̂ acting in a Hilbert space H1 to density operators
Ei,ni

(
ρ̂
)

acting in a Hilbert space H2 (equal to H1 or not). These operators depend on parameters
ni, and we consider the QSD problem for the mixture of the operators Ei,ni

(
ρ̂
)

The object of our
interest is the asymptotic behavior of the minimal error (3.6) corresponding to this QSD, as some
or all ni → ∞. We will say that the asymptotic QSD problem fully solvable with respect to the
parameter ni when

lim
|ni|→∞

min
POVM

pE
{

{pi,Ei,ni

(
ρ̂
)
}Ni=1, {M̂l

}K
l=1

}
= 0 (3.7)

the minimization above is understood to be taken for every ni.

Asymptotic QSD arises naturally in the study of quantum communication, quantum to classical
transitions and quantum measurement, just to name a few applications [61][40][22] [26]. As an example
consider the case where a state is redundantly prepared by some party A in the state ρ̂i with probability
pi, n copies of each state being made prior to being communicated to another party. From the
perspective of some party B, receiving the state prepared by A, the received state would be a mixture
of the following form ∑

i

piρ̂
⊗n
i (3.8)

In such a case the corresponding maps Ei,ni have ni = n for all i and are the map ρ̂ to ρ̂⊗n for all i.
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Now, define minPOVMP pE(n) := minPOVM pE
{

{pi, ρ̂⊗n
i }Ni=1, {M̂l

}K
l=1

}
. In [61] it was shown that

1
3ξQCB

({
ρ̂i
}N
i=1

)
≤ − lim

n→∞

log
(

minPOVMP pE(n)
)

n
≤ ξQCB

({
ρ̂i
}N
i=1

)
(3.9)

where ξQCB is the quantum Chernoff bound for an N mixture, defined as

ξQCB

({
ρ̂i
}N
i=1

)
:= min

i,j
ξQCB

(
ρ̂i, ρ̂j

)
(3.10)

where
ξQCB

(
ρ̂i, ρ̂j

)
= − log

(
min

0≤s≤1
Tr
{

ρ̂si ρ̂
1−s
j

})
(3.11)

This gives us an idea of how the minimum error probability drops off asymptotically as the redun-
dancy n grows. Indeed as n → ∞ we have minPOVM pE → 0.

One may also use a Quantum Chernoff-bound-free method for the computation of

lim
n→∞

min
POVM

pE(n)

by applying a bound to the minimal probability error in [27] (Theorem 3.2.3 in the following section).
Let

∥∥Â
∥∥

1 := Tr
{√

Â†Â
}

be the trace norm of the operator Â Applying Theorem 3.2.3 we have the
following result.

min
POVM

pE(n) ≤
∑
i

∑
j;j ̸=i

√
pipj

∥∥∥√ρ̂⊗n
i

√
ρ̂⊗n
j

∥∥∥
1

=
∑
i

∑
j;j ̸=i

√
pipj

∥∥∥√ρ̂i

√
ρ̂j

∥∥∥n
1

(3.12)

which decays to zero as n → ∞ when
∥∥∥√ρ̂i

√
ρ̂j

∥∥∥
1
< 1 for all i, j; j ̸= i. One of the remarkable

aspects of such a result is the state-independent nature of the convergence, i.e. so long as the fidelity
condition stated in the previous sentence is satisfied, the type of states are irrelevant; e.g. they can
be finite or infinite dimensional density operators. QSD will nevertheless be dependent on the states
ρ̂i constituting the mixture in general. Our next example exemplifies this.

More recently, and more pertinently to the theme of this paper, asymptotic QSD has made an
appearance in the theory of Spectrum Broadcast Structures (SBS) [40] for quantum measurement limit
type interactions (see section 2.4 in [31] for a discussion on quantum measurement limit). In the SBS
framework, a notion of objectivity is introduced which postulates that a specific type of state, called
an SBS state [40] [39] [38], will emerge from the asymptotic dynamics. The definition of an SBS state
stipulates the calculation of a problem related to that of QSD when proving that a state of interest
converges one of these so-called SBS state. The relevant optimization problem is now the super QSD
problem (SQSD) which is just a simple upper bound of the QSD problem. i.e.
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SQSD := min
POVM

∥∥∥1 −
N∑
i=1

piTr
{

M̂iρ̂iM̂
†
i

}∥∥∥
1

≥ min
POVM

(
1 −

N∑
i=1

piTr
{

M̂iρ̂iM̂
†
i

})
= QSD (3.13)

In [38] [39] [40], special attention has been given to SQSD problems of the following form.

min
POVM

∑
i

pi
∥∥e−itxiB̂ρ̂eitxiB̂ − M̂ie

−itxiB̂ρ̂eitxiB̂M̂†
i

∥∥
1 (3.14)

where xi ̸= xj for all i, j; j ̸= i and B̂ is an arbitrary self-adjoint operator; the state being discriminated
here is of course

∑
i pie

−itxiB̂ρ̂eitxiB̂. Such unitarily related mixtures, with a parameter t, arise as a
direct consequence of the aforementioned quantum measurement limit assumption made in [38][39][40].
The super QSD problem (3.14) is asymptotically fully solvable with respect to t only if the associated
QSD problem is fully solvable. Unlike example (3.8), where the asymptotic full solvability of the
respective QSD problem was independent of the nature of the states involved, here this is not the
case. It is easy to find examples where SQSD optimization problems of the type exhibited in (3.14)
does not vanish as t → ∞. e.g, let B̂ be equal to the Pauli matrix σ̂x and let ρ̂ =

∣∣z1
〉〈
z1
∣∣ with{∣∣zi〉}i the eigenvectors of the Pauli matrix σ̂z. It is easy to show that

e−itxiσx ρ̂e−itxiσx = (3.15)

cos2(txi)
∣∣z1
〉〈
z1
∣∣+ sin2(txi)

∣∣z2
〉〈
z2
∣∣+ (3.16)

i cos(txi) sin(txi)
∣∣z1
〉〈
z2
∣∣− i cos(txi) sin(txi)

∣∣z2
〉〈
z1
∣∣ (3.17)

Now consider the mixture
2∑
i=1

pie
−itxiσx ρ̂e−itxiσx (3.18)

and let pi = 1
2 for i = 1, 2. An application of a result by Hellström [66], discussed in the next section

leads to
min
POVM

pE(t) = 1
2 − 1

4
∥∥e−itx1σx ρ̂e−itx1σx − e−itx1σx ρ̂e−itx1σx

∥∥
1 = (3.19)

2
∣∣∣√( cos2(tx1) − cos2(tx2)

)(
sin2(tx1) − sin2(tx2)

)
−
(∣∣ cos(tx1) sin(tx1) − cos(tx2) sin(tx2)

∣∣2)∣∣∣ (3.20)

Clearly (3.19) does not converge to zero as t → ∞, ergo asymptotic QSD is not fully solvable and, by
consequence of (3.13), neither is the associated asymptotic SQSD problem.

In this Chapter, we will be focusing on the QSD of unitarily related mixtures (URM); i.e. mixtures
of the form

∑
i piÛi(t)ρ̂Û†

i (t), where Ûi(t) are all unitary operators with the same generator. We will
provide a necessary and sufficient condition for the asymptotic full solvability of the QSD optimization
problem for a broad set of URM; this condition will depend on the spectral properties of the generator
of the unitary group characterizing the URM and the nature of the initial state, i.e. the state of the
mixture when t = 0. In Sections 2, and 3 we will give an overview of some important results from
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the literature that we shall be using and give further motivation. In section 4 we present one of our
main results (Theorem 3.6.2 and Corollary 3.6.1) which gives necessary and sufficient conditions for
asymptotic QSD optimization of unitarily related mixtures to be fully solvable in a broad setting. In
section 5 we shall introduce the optimization problem of Uncountable Quantum State Discrimination
(UQSD); a framework that generalizes the problem of QSD. Drawing parallels between QSD and
UQSD we prove a necessary condition for UQSD in the unitarily related mixture case to be fully
solvable in the asymptotic regime with respect to a dynamical parameter t. This condition will again
depend only on the spectral properties of the generator of the unitary group characterizing the URM
and the nature of the initial state. We conclude this discussion by conjecturing that the analog
of Theorem 3.6.2 is true for the UQSD case in the unitarily related mixture setting; we follow this
conjecture with some motivation and intuition. Furthermore, we provide examples of QSD and UQSD
for a variety of settings and discuss the case where B̂ is finite rank.

3.1 PVM Quantum State Discrimination

Let us consider agin the minimization problem

min
POVM

{
1 −

N∑
i=1

piTr
{

M̂iρ̂iM̂
†
i

}}
. (3.21)

The minimization in (3.21) is taken over all POVM which which maps from S(H ) to S(H ) . Let
us now narrow the set of possible POVM to just those of the projector type. To emphasize this we
will change our notation from Êl to P̂l, and owing to the facts that projectors are self-adjoint and
P̂2 = P̂, the respective measurement operators of M̂l will just be P̂l. Let us rewrite the probability
error using this new notation.

min
PVM

{
1 −

N∑
i=1

piTr
{

P̂iρ̂i
}}

. (3.22)

In the above, we have made use of the cyclic property of the trace (1.33). In (3.22) and (3.21) we are
minimizing over all PVM and POVM respectively. Furthermore, (3.22) bounds (3.21) from above due
to the latter term being a minimization performed on the same objective function as (3.21) but over
a smaller set. i.e.

min
POVM

{
1 −

N∑
i=1

piTr
{

M̂iρ̂iM̂
†
i

}}
≤ min
PVM

{
1 −

N∑
i=1

piTr
{

P̂iρ̂i
}}

(3.23)

In some cases, working with PVM is simpler and suffices. The optimization problems (3.22) and
(3.21) will, in general, be intractable; exact solutions exist only in a few specialized cases [22] [23].
The most famous of these cases pertains to the the so-called Hellström bound [66]. It is a funny name
because it is not a bound. We present the exposition found in [22] below.
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Theorem 3.1.1 (Hellström Bound)

Let H be an arbitrary Hilbert space. For any mixture of the form

p1ρ̂1 + p2ρ̂2 ∈ S(H ). (3.24)

Then,
min
POVM

pE
{

{pi, ρ̂i}2
i=1, {Êl

}2
l=1

}
= 1

2 − 1
2
∥∥p1ρ̂1 − p2ρ̂2

∥∥
1. (3.25)

where the optimal POVM leading to the minimal error are the projectors P̂+ and P̂− onto the
positive and negative subspaces of the operator p1ρ̂1 − p2ρ̂2.

Due to the optimal POVM yielding minimal error in the Hellstr öm bound being a set of projectors,
we know that for mixtures of two elements

∑2
i=1 piρ̂i both PVM QSD and POVM QSD will be equal.

i.e.

min
POVM

{
1 −

2∑
i=1

piTr
{

M̂iρ̂iM̂
†
i

}}
= 1

2 − 1
2
∥∥p1ρ̂1 − p2ρ̂2

∥∥
1 = min

PVM

{
1 −

2∑
i=1

piTr
{

P̂iρ̂i
}}

(3.26)

3.2 Some Useful Theorems

Lower and upper bounds for the probability error in the case of a general mixture exist. Some of
the more famous ones are the following. For any mixed quantum states

{
ρ̂i
}N
i=1 with respective

probabilities {pi}i, the minimum-error probability minPOVM pE may be bounded as follows for an
arbitrary Hilbert space H .

Theorem 3.2.1 (Li and Qiu Bound [25])

min
POVM

pE ≥ 1
2
(
1 − 1

2(N − 1)
∑
i

∑
j;j ̸=i

∥∥piρ̂i − pjρ̂j
∥∥

1

)
(3.27)

Theorem 3.2.2 (Montanaro Bound [72])

min
POVM

pE ≥ 1
2
∑
i

∑
j;j ̸=i

pipjF (ρ̂i, ρ̂j) (3.28)

Theorem 3.2.3 (Knill and Barnum [27])

min
POVM

pE ≤
∑
i

∑
j;j ̸=i

√
pipj

√
F
(
ρ̂i, ρ̂j

)
(3.29)

Proven for the case where the underlying Hilbert space is assumed finite-dimensional in [27].
We provide a proof of the same result for the case where H is infinite-dimensional in subsection
3.2.1.
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In [25], necessary and sufficient conditions are introduced in order to arrive at a generalization of
the Hellström bound. Unlike the proof by Hellström for the two-state mixture, Qiu does not provide
a constructive proof. We, therefore, do not have explicit knowledge of the POVM minimizes pE
although [25] is the work known to the author that makes the greatest advances in this direction. If
the inequalities above are not enough for our needs, there also exist convex optimization techniques
that may be employed in order to find a global min for the objective fiction pE (3.2) [22][70] , but
we will not be entering this realm for two reasons. Firstly, the mixtures that we shall be studying
will be dynamic. i.e.

∑
i piρ̂i,t. The mixtures of this type that we will be interested in shall have the

following asymptotic properties.

F
(
ρ̂i,t, ρ̂j,t

)
→ 0, i ̸= j, t Large (3.30)

The latter means that their support will become asymptotically non-overlapping very quickly with
respect to the relevant time frame. These dynamics will make the aforementioned linear program-
ming techniques quite more complex than the static case; also unnecessary since we will be primarily
interested in the asymptotic regime for t. The second reason we will not be utilizing the linear pro-
gramming schemes mentioned is the dimension of the density operators we shall be working with, i.e.
dim(H ) = ∞. In this case, the set of possible PVM or POVM is unwieldy in the sense that it will
not be parametrizable like the finite-dimensional case. Although infinite, the set of PVM mapping
S(C2) to S(C2) may be parametrized by a finite number of parameters; such is not the case when
dim(H ) = ∞.

To conclude this section we shall present some key results pertaining to the quantum fidelity.

Theorem 3.2.4 (Purification dependent version of the Fidelity)

The quantum fidelity F
(
ρ̂, σ̂

)
is equivalent to the following [9].

F
(
ρ̂, σ̂

)
= max

|χ⟩

∣∣〈ξ∣∣χ〉∣∣2 (3.31)

where
∣∣ψ〉 is any fixed purification of ρ̂, and the maximization is over all purifications of σ̂.

Theorem 3.2.5 (Subconcavity of the Fidelity; A Generalization from the equiv-
alent theorem for singular distributions in [9] )

Let
∫
p(x)ρ̂xdx and

∫
q(x)σ̂xdx be two uncountable mixtures (p(x) and q(x) are probability

distributions). Then,√
F
(∫

p(x)ρ̂xdx,
∫
q(x)σ̂xdx

)
≥
∫ √

p(x)q(x)F
(
ρ̂x, σ̂x

)
dx (3.32)

Proof. The proof herein follows the standard methodology seen in [9] Chapter 9 for the countable
mixture case. Begin by letting

∣∣ψx〉 and
∣∣σx〉 the purifications of ρ̂x and σ̂x which satisfy the maxi-
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mization version of the fidelity; i.e. F
(

ρ̂x, σ̂x

)
=
∣∣〈ψx∣∣ϕx〉∣∣2. We now define

∣∣ψ〉 :=
∫ √

p(x)
∣∣ψx〉∣∣x〉dx (3.33)

∣∣ϕ〉 :=
∫ √

q(x)
∣∣ϕx〉∣∣x〉dx. (3.34)∣∣ψ〉 and

∣∣ϕ〉 are purifications of the operators
∫
p(x)ρ̂xdx and

∫
q(x)σ̂xdx where the ancillary space

is taken to be L2(R). Using Theorem 3.2.4 we now have.√
F
(∫

p(x)ρ̂xdx,
∫
q(x)σ̂xdx

)
≥ |
〈
ϕ
∣∣ψ〉∣∣ = (3.35)

∣∣∣∣∣
∫ √

p(x)
√
q(y)

〈
ψx
∣∣ϕy〉〈x∣∣y〉dydx

∣∣∣∣∣ =
∣∣∣∣∣
∫ ∫ √

p(x)q(x)
〈
ψx
∣∣ϕx〉dx

∣∣∣∣∣ = (3.36)

∣∣∣∣∣
∫ √

p(x)q(x)
〈
ψx
∣∣ϕx〉dx

∣∣∣∣∣ =
∫ √

p(x)q(x)F
(
ρ̂x, σ̂x

)
dx (3.37)

The latter gives us the means by which we may bound fidelities of mixed state from below. There
is a useful corollary that follows immediately from Lemma 3.2.5. We present it here below.

Corollary 3.2.1 (Sub-concavity in one argument)

Let
∫
p(x)ρ̂xdx be some uncountable mixture, and σ̂ be some arbitrary density operator (p(x)

is a probability distributions). Then,√
F
(∫

p(x)ρ̂xdx, σ̂
)

≥
∫
p(x)F

(
ρ̂x, σ̂

)
dx (3.38)

Proof. Note that σ̂ =
∫
p(x)σ̂dx. The proof follows from applying Lemma (3.2.5) to the Fidelity√

F
( ∫

p(x)ρ̂xdx,
∫
q(x)σ̂dx

)
.

Note that the probability distributions p(x) and q(x) found in the results above pertaining to
the quantum fidelity may be singular ; Dirac measures for example. If p(x) and q(x) are taken to
be singular measures then we may obtain the countable versions of the Theorem 3.2.5 and Corollary
3.2.1 ubiquitous in quantum information theory texts such as [9].

Before ending this section, we dedicate a subsection to proving that Theorem 3.2.3 can indeed be
generalized to the case of mixtures of infinite dimensional density operators.
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3.2.1 Generalizing the Knill-Barnum Bound

Recall that for a mixed state,
∑N
i=1 piρ̂i of finite rank density matrices, the QSD problem may be

bounded from above as follows (by Theorem 3.2.3).

min
POVM

(
1 −

N∑
i=1

piTr{M̂iρ̂jM̂
†
i}
)

≤
N∑
i=1

N∑
j ̸=i

√
pipj

√
F (ρ̂i, ρ̂j) (3.39)

Before we can use this result in all generality we have to reassure ourselves that this bound will
work for the case where the density operators in question, i.e. ρ̂i are infinite-dimensional. The
verification is necessary because the proof of (3.29) in [27] uses techniques that involve inverting
linear combinations of the operators ρ̂i, and as is known from functional analysis, infinite-dimensional
compact operators are not invertible. Hence, it is necessary to ensure the extension of Theorem3.2.3
to the case of infinite-dimensional density operators. Before we move on to the proof, we will first
prove a Lemma that will be useful in proving the upcoming theorem.

Lemma 3.2.1 (Limit Lemma)

Let ρ̂i,d =
∑d
k=1 λki|ψki⟩⟨ψki| be a rank d approximation of the operator ρ̂i . Then

lim
d→∞

∥∥∥√ρ̂i,d

√
ρ̂j,d

∥∥∥
1

=
∥∥∥√ρ̂i

√
ρ̂j

∥∥∥
1

(3.40)

Proof.

lim
d→∞

∣∣∣∣∥∥∥√ρ̂i,d

√
ρ̂j,d

∥∥∥
1

−
∥∥∥√ρ̂i

√
ρ̂j

∥∥∥
1

∣∣∣∣ ≤ (3.41)

lim
d→∞

∥∥∥∥√ρ̂i,d

√
ρ̂j,d −

√
ρ̂i

√
ρ̂j

∥∥∥∥
1

≤ (3.42)

lim
d→∞

∥∥∥∥√ρ̂i,d

√
ρ̂j,d −

√
ρ̂i

√
ρ̂j,d

∥∥∥∥
1

+ lim
d→∞

∥∥∥∥√ρ̂i

√
ρ̂j,d −

√
ρ̂i

√
ρ̂j

∥∥∥∥
1

≤ (3.43)

lim
d→∞

∥∥∥∥√ρ̂i,d −
√

ρ̂i

∥∥∥∥
2

∥∥√ρ̂j,d
∥∥

2 + lim
d→∞

∥∥∥∥√ρ̂j,d −
√

ρ̂j

∥∥∥∥
2

∥∥√ρ̂i
∥∥

2 ≤ (3.44)

lim
d→∞

∥∥∥∥√ρ̂i,d −
√

ρ̂i

∥∥∥∥
2

+ lim
d→∞

∥∥∥∥√ρ̂j,d −
√

ρ̂j

∥∥∥∥
2

= (3.45)

lim
d→∞

∥∥∥∥ ∑
k=d+1

√
λki|ψki⟩⟨ψki|

∥∥∥∥
2

+ lim
d→∞

∥∥∥∥ ∑
k=d+1

√
λkj |ψkj⟩⟨ψkj |

∥∥∥∥
2

= (3.46)

lim
d→∞

(√√√√ ∞∑
k=d+1

λki +

√√√√ ∞∑
k=d+1

λkj

)
= lim
d→∞

∞∑
k=d+1

(√
λki +

√
λkj
)

= 0 (3.47)

We are now ready to prove that Theorem 3.2.3 may be generalized to the case of mixtures of
infinite dimensional density operators. .
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Theorem 3.2.6 (Knill and Barnum Bound [27] Generalized)

Let
∑N
i=1 piρ̂i be some finite mixture of infinite dimensional density operators, then the Knill

Barnum (3.29) bound applies to such a mixture.

Proof. Starting from the optimization problem minPOVM
∑N
i=1
∑M
j;j ̸=i piTr{M̂jρ̂iM̂

†
j}, notice that

we may rewrite each ρ̂i as the limit of a sequence of finite rank operators. To see this, first we
diagonalize the ρ̂i. i.e. ρ̂i =

∑∞
k=1 λki|ψki⟩⟨ψki|. Where the λki are the eigen values of ρ̂i. A d rank

approximation of ρ̂i is therefore ρ̂i,d :=
∑d
k=1 λki|ψki⟩⟨ψki| and indeed

lim
d→∞

∥∥∥ρ̂i,d − ρ̂i

∥∥∥
1

= lim
d→∞

∥∥∥ ∞∑
k=d+1

λki|ψki⟩⟨ψki|
∥∥∥

1
≤ lim
d→∞

∞∑
k=d+1

|λki| = 0. (3.48)

To proceed we must first demonstrate

min
POVM

∑
i=1

∑
j;i̸=j

piTr{M̂jρ̂iM̂
†
j} = lim

d→∞
min
POVM

∑
i=1

∑
j;i̸=j

piTr{M̂jρ̂i,dM̂
†
j}. (3.49)

To show the above we need only show that

lim
d→∞

∣∣∣∣ min
POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂iM̂
†
j} − min

POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂i,dM̂
†
j}
∣∣∣∣ = 0. (3.50)

We proceed as follows.∣∣∣∣ min
POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂iM̂
†
j} − min

POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂i,dM̂
†
j}
∣∣∣∣ ≤ (3.51)

max
POVM

∣∣∣∣∑
i=1

∑
j;i̸=j

piTr{M̂j

(
ρ̂i − ρ̂i,d

)
M̂†

j}
∣∣∣∣ ≤ (3.52)

max
POVM

∑
i=1

∑
j;i ̸=j

pi

∥∥∥M̂j

(
ρ̂i − ρ̂i,d

)
M̂†

j

∥∥∥
1

≤ max
POVM

∑
i=1

∑
j;j ̸=i

pi
∥∥M̂j

∥∥
∞

∥∥∥(ρ̂i − ρ̂i,d
)∥∥∥

1

∥∥M̂†
j

∥∥
∞ = (3.53)

max
POVM

∑
i=1

∑
j;j ̸=i

pi

∥∥∥(ρ̂i − ρ̂i,d
)∥∥∥

1
=
∑
i=1

∑
j;j ̸=i

pi

∥∥∥(ρ̂i − ρ̂i,d
)∥∥∥

1
= (3.54)

∑
i=1

∑
j;j ̸=i

pi

∞∑
k=d+1

|λki| ≤ N
∑
i

pi

∞∑
k=d+1

|λki| (3.55)

and indeed
lim
d→∞

N
∑
i=1

pi

∞∑
k=d+1

λki = (3.56)

N

N∑
i=1

pi lim
d→∞

∞∑
k=d+1

λki = N

N∑
j=1

0 = 0. (3.57)
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Therefore,

lim
d→∞

∣∣∣∣ min
POVM

N∑
i=1

N∑
j;j ̸=i

piTr{M̂jρ̂iM̂
†
j} − min

POVM

N∑
i,j;i̸=j

piTr{M̂jρ̂i,dM̂
†
j}
∣∣∣∣ = 0 (3.58)

which means that

min
POVM

N∑
i=1

N∑
j;j ̸=i

pjTr{M̂jρ̂iM̂
†
j} = lim

d→∞
min
POVM

N∑
i=1

N∑
j;j ̸=i

piTr{M̂jρ̂i,dM̂
†
j}. (3.59)

Let us now introduce a normalization constant αi,d := Tr
{

ρ̂i,d
}

. Using this normalization and the
Knill-Barnum bound (3.29) [27] we have

lim
d→∞

min
POVM

N∑
i

N∑
j;j ̸=i

pjα
−1
i,dTr{M̂jαi,dρ̂i,dM̂

†
j} ≤ (3.60)

lim
d→∞

max
k

(
α−1
k,d

)
min
POVM

N∑
i=1

N∑
j;j ̸=i

piTr{M̂jαi,dρ̂i,dM̂
†
j} ≤ (3.61)

lim
d→∞

max
k

(
α−1
k,d

) N∑
i=1

N∑
j;j ̸=i

√
pipj

√
F (αi,dρ̂i,d, αj,dρ̂j,d) = (3.62)

lim
d→∞

max
k

(
α−1
k,d

) N∑
i=1

N∑
j;j ̸=i

√
pipj

∥∥∥√αi,dρ̂i,d√αj,dρ̂j,d∥∥∥1
= (3.63)

N∑
i=1

N∑
j;j ̸=i

√
pipj lim

d→∞
max
k

(
α−1
k,d

)√
αi,dαj,d

∥∥√ρ̂i,d

√
ρ̂j,d

∥∥
1 = (3.64)

N∑
i

N∑
j;j ̸=i

√
pipj

(
lim
d→∞

max
k

(
α−1
k,d

)√
αi,dαj,d

)(
lim
d→∞

∥∥∥√ρ̂i,d

√
ρ̂j,d

∥∥∥
1

)
= (3.65)

N∑
i=1

N∑
j;j ̸=i

√
pipj

√
F (ρ̂i, ρ̂j) (3.66)

where we have used lemma 3.2.1 and the fact that limd→ αk,d = 1 for all k in the final equality.

3.3 Unitarily Related Mixtures

In what follows we will be restricting our attention to a specific type of ensemble {pi, ρ̂i,t}Ni=1.
Namely, those where

ρ̂i,t := e−itxiB̂ρ̂eitxiB̂ (3.67)

for some self-adjoint operator B̂ and some density operator ρ̂ both acting in an arbitrary Hilbert space
H . All of the operators ρ̂i,t are unitary evolutions of the density operator ρ̂, with the dynamics
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being generated respectively by the operators xiB̂. Of particular interest to us will be the case
where the operator B̂ has purely continuous spectrum and a non-empty Rajchman subspace Hrc

with ρ̂ ∈ S
(
Hrc

)
(See Section 3.5 of this thesis) [58]; such assumptions will be necessary in order to

guarantee (3.30). A particular instance of the latter setup will be the case where B̂ is a quadrature
operator [19], aka position or momentum operators (the quadrature operator pairs are a generalization
of these). In such a case the entire Hilbert space L2(R) will be the Rajchman subspace [58]. For
starters, let us work in the case where B̂ is a momentum operator; we will then generalize to the
case of a general quadrature operator. In section 3.5 we will formalize the concept of the Rajchman
subspace and use this to prove asymptotic QSD for a broad family of unitarily related mixtures.
Before proceeding we present two lemmas.

Lemma 3.3.1 (Trace Lemma)

Let the operator B̂ be a momentum operator (1.20) acting in D
(
B̂
)

⊂ L2(R). We call X̂
satisfying

[
X̂, B̂

]
= iI the conjugate of B̂, aka the position operator. Let ρ̂ be some density

operator in S
(
L2(R)

)
with representation

ρ̂ =
∫ ∫

K(x, y)
∣∣x〉〈y∣∣dxdy (3.68)

in the generalized eigenbais of X̂. Then, it can be shown that

e−itxiB̂ρ̂eitxiB̂ =
∫ ∫

K(x, y)
∣∣x+ txi

〉〈
y + txi

∣∣dxdy (3.69)

and
Tr{e−itxiB̂ρ̂eitxiB̂} =

∫
K(x− txi, x− txi)dx. (3.70)

Proof. The proof hinges on utilizing the following decomposition found in standard quantum textbooks
[6]. ∣∣x〉 =

∫
e−ibx∣∣b〉db. ( ∫ ∣∣x〉〈x∣∣dx = I

)
, (3.71)

where
∣∣x〉 and

∣∣b〉 are the position and momentum operators’ generalized eigenkets respectively. Fur-
thermore, 〈

b
∣∣x〉 = 1√

2π
e−ibx. (3.72)

We will first prove (3.69) of Lemma 3.3.1. Notice that we may rewrite ρ̂, originally expressed in
the position generalized basis, in the momentum generalized basis.

ρ̂ =
∫ ∫

K(x, y)
∣∣x〉〈y∣∣dxdy =

∫ ∫ ∫ ∫
K(x, y)

∣∣b〉〈b∣∣x〉〈y∣∣b′〉〈b′∣∣dbdb′dxdy = (3.73)

∫ ∫ {∫ ∫
K(x, y)

〈
b
∣∣x〉〈y∣∣b′〉dxdy}∣∣b〉〈b′∣∣dbdb′ = (3.74)
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∫ ∫ { 1
2π

∫ ∫
K(x, y)e−ibxeib

′ydxdy

}∣∣b〉〈b′∣∣dbdb′ = (3.75)∫ ∫
K̂(b, b′)

∣∣b〉〈b′∣∣dbdb′ (3.76)

where K̂(b, b′) is the 2-D Fourier transform of the kernel K(x, y). Now,

e−itxiB̂ρ̂eitxiB̂ =
∫ ∫

e−itxibeitxib
′
K̂(b, b′)

∣∣b〉〈b′∣∣dbdb′ = (3.77)

∫ ∫ { 1
2π

∫ ∫
e−itxibeitxib

′
K̂(b, b′)eibxe−ib′ydbdb′

}∣∣x〉〈y∣∣dxdy = (3.78)

∫ ∫ { 1
2π

∫ ∫
ei(x−txi)be−i(y−txi)b′

K̂(b, b′)dbdb′
}∣∣x〉〈y∣∣dxdy = (3.79)∫ ∫

K(x− txi, y − txi)
∣∣x〉〈y∣∣dxdy =

∫ ∫
K(x, y)|x+ txi⟩⟨y + txi|dxdy. (3.80)

The physicists reading this may simply be used to working with the operator e−itxiB̂ and imme-
diately identify it as a translation operator. In such a case one may simply take for granted that
e−itxiB̂

∣∣x〉 =
∣∣x+ txi

〉
since it is an elementary result from introductory quantum mechanics.

Finally, proving (3.70) is easier since we may use property (3.69).

e−itxiB̂ρ̂eitxiB̂ =
∫ ∫

K(x, y)
∣∣x+ txi

〉〈
y + txi

∣∣dxdy =
∫ ∫

K(x− txi, y − txi)
∣∣x〉〈y∣∣dxdy. (3.81)

From here, (3.70) follows directly from the generalization to Theorem 1.3.1 presented in Chapter 2.
This generalization may be found in [47] ( ADDENDA D).

Lemma 3.3.2 (Trace Lemma)

Let ∆ ∈ R and define P̂∆ :=
∫

∆ |x⟩⟨x|dx. The operator P̂∆ :=
∫

∆ |x⟩⟨x|dx is projector
acting in the Hilbert space L2(R). Then, for any ρ̂ ∈ S

(
L2(R)) with representation ρ̂ =∫ ∫

K(x, y)|x⟩⟨y|dxdy, where K(x, y) is the kernel of ρ̂,

Tr
{

P̂∆ρ̂P̂∆
}

= Tr
{

P̂∆ρ̂
}

=
∫

∆
K(x, x)dx (3.82)

Proof.
P̂∆ρ̂P̂∆ =

∫
∆

∫
∆

∫ ∫
K(x, y)

∣∣w〉〈w∣∣x〉〈y∣∣z〉〈z∣∣dxdydwdz = (3.83)∫
∆

∫
∆

∫ ∫ ∫
K(x, y)δ(w − x)δ(y − z)

∣∣w〉〈z∣∣dxdydwdz =
∫

∆

∫
∆
K(x, y)

∣∣x〉〈y∣∣dxdy. (3.84)

Using, once again, the generalization to Theorem 1.3.1 taking the trace of∫
∆

∫
∆
dxdyK(x, y)

∣∣x〉〈y∣∣
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simply mounts to integrating along the diagonal of K(x, y) over the set ∆. i.e.

Tr

{∫
∆

∫
∆
K(x, y)

∣∣x〉〈y∣∣dxdy} =
∫

∆
K(x, x)dx. (3.85)

Hence, we conclude that
Tr
{

P̂∆ρ̂P̂∆
}

=
∫

∆
K(x, x)dx. (3.86)

By the cyclicity of the trace, it immediately follows that Tr{P̂∆ρ̂P̂∆} = Tr{P̂2
∆ρ̂} = Tr{P̂∆ρ̂} and

so we have our result.

We now have the tools for facing the problem at hand, i.e. finding a PVM
{

P̂l

}
l

such that (3.22)
is approximately minimized for the case of the ensemble {pi, ρ̂i,t}Ni=1, where again

ρ̂i,t := e−itxiB̂ρ̂eitxiB̂. (3.87)

where B̂ is a momentum operator and ρ̂ ∈ S
(
L2(R)). To that end let us partition the real line in the

following way.
∆1,t :=

(
− ∞, t

x1 + x2

2

)
(3.88)

∆i,t :=
(
t
xi−1 + xi

2 , t
xi + xi+1

2

)
1 < i < N (3.89)

∆N,t :=
(
t
xN−1 + xN

2 ,∞
)

(3.90)

Indeed
⋃N
i=1 ∆i,t = R. Letting P̂∆i,t

:= χ∆i,t

(
X̂
)
, where X̂ is the conjugate operator to B̂, i.e. the

corresponding position operator, we have the following.

N∑
i=1

P∆i,t
=

N∑
i=1

∫
∆i,t

∣∣x〉〈x∣∣dx =
∫
R

∣∣x〉〈x∣∣dx = I. (3.91)

To check if the POVM constructed above {P̂∆i,t
}Ni=1 is efficient in discriminating the mixture

∑N
i=1 piρ̂i,t,

let us compute the Tr{ρ̂i,tP̂∆i,t
}. Computing such traces just involves a simple application of Lemma

3.3.2 and a change of variables. We present the results below and a short computational proof in the
following.

Tr{P̂∆1,t
ρ̂1,t} =

∫
∆1,t

K(x− tx1, x− tx1)dx =
∫ t

x2−x1
2

−∞
K(x, x)dx (3.92)

Tr{P̂∆i,t
ρ̂i,t} =

∫
∆i,t

K(x− txi, x− txi)dx =
∫ t

xi+1−xi
2

t
xi−1−xi

2

K(x, x)dx (3.93)

Tr{P̂∆N,t
ρ̂N,t} =

∫
∆N,t

K(x− txN , x− txN )dx =
∫ ∞

t
xN−1−xN

2

K(x, x)dx (3.94)
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Proof.

Tr{P̂∆1,t
ρ̂1,t} =

∫ t
x1+x2

2

−∞
dxK(x− tx1, x− tx1) (3.95)

Let u(x) = x− tx1, then du(x) = dx, u(tx1+x2
2 ) = tx1+x2

2 − tx1 = tx2−x1
2 , and furthermore u(−∞) =

−∞. Using this substitutive scheme we may recast (3.92) as
∫ t x2−x1

2
−∞ K(u, u)du which is what we set

out to prove. In a similar fashion, one may convince oneself that equations (3.93) and (3.94) hold.

For finite {xi}Ni=1 all of the above integrals approach 1 asymptotically as t → ∞. The latter implies
that (3.22) goes to zero as well. We will state the latter as a theorem.

Theorem 3.3.1

Consider the mixture
∑N
i=1 piρ̂i,t where ρ̂i,t := e−itxiB̂ρ̂eitxiB̂, B̂ is a momentum operator and

ρ̂ ∈ S
(
L2(R)). Then

min
PVM

{
1 −

N∑
i=1

piTr
{

P̂iρ̂iP̂i

}}
≤ (3.96)

1 − p1

∫ t
x2−x1

2

−∞
K(x, x)dx−

∑
1<i<N

pi

∫ t
xi+1−xi

2

t
xi−1−xi

2

K(x, x)dx− pN

∫ ∞

t
xN−1−xN

2

K(x, x)dx (3.97)

For t → ∞ the above upper bound approaches 1 −
∑N
i=1 pi = 1 − 1 = 0 achieving optimal QSD.

We have focused on the Hilbert space L2(R) but these results may be easily extended to the case
of n dimensional square-integrable functions by the same methodology.

3.4 More Unitarily Related Mixtures

Hitherto we constrained ourselves to a mixture of the form

N∑
k=1

ρ̂k,t :=
N∑
k=1

e−itxkB̂ρ̂eitxkB̂ (3.98)

where B̂ was taken to be the momentum operator and ρ̂ ∈ S
(
L2(R2)

)
. In this section, we will gradually

move toward studying more general mixtures of the unitarily related type and their respective QSD
problem. Firstly, we will study the case where the unitary evolution is generated by parametrized
Displacemet [19] operators, a generalization of the momentum operator; we will analyze such a case
for a simple coherent state as our t = 0 density operator ρ̂, then we shall generalize to an arbitrary
state.

3.4.1 Quadrature Operators

A generalization of the momentum-position conjugate pair of operators may be arrived at by
recalling that the position and momentum operators P̂ and X̂ may be written in terms of ladder
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operators. We present them below in the ladder operator form discussed in (1.93) (1.94), including
units.

X̂ =
√

1
2mω (â + â†) (3.99)

P̂ = −i
√
mω

2 (â − â†) (3.100)

[X̂, P̂] = iI (3.101)

where we remind the reader that the operators â and â† may be understood by their action on number
states

∣∣n〉 (
〈
x
∣∣n〉, are the Hermite functions introduced in (1.25)). i.e.

â†∣∣n〉 =
√
n+ 1

∣∣n+ 1
〉

(3.102)

â
∣∣n〉 =

√
n
∣∣n〉. (3.103)

For the following study, the unit carrying terms such as the angular frequency ω, and mass m will
be immaterial. The pair of equations (3.99) and (3.100) can be traded in for

X̂ = 1√
2

(â + â†) (3.104)

P̂ = − i√
2

(â − â†) (3.105)

without losing anything of mathematical importance. It can be shown that the commutation relation
(3.101) will remain unchanged [19]. We now present the generalization of the position-momentum
pair (3.104) (3.105).

Q̂ϕ = 1√
2

(ei ϕ â + e−i ϕ â†) (3.106)

P̂ϕ = −i√
2

(ei ϕ â − e−i ϕ â†). (3.107)

Notice that the latter pair of operators reduces to the former when ϕ = 1. It can be shown that
canonical commutation relations will remain the same as those for the usual position and momentum
operators, independent of ϕ, i.e.

[Q̂ϕ, P̂ϕ] = iI, (3.108)

meaning that the algebras
{
I, Q̂ϕ, P̂ϕ

}
are equivalent (via isomorphism) to the algebra

{
I, X̂, P̂

}
for

all ϕ ∈ R. It is interesting to note that for any ϕ ∈ R

[Q̂ϕ, Q̂ϕ+ π
2
] = iI, (3.109)

meaning that the quadrature momenta are π
2 rotations of the respective conjugate operator in some

sense.

73



3.4.2 Unitarily Related Countable Mixtures. The case for Coherent States

Let P̂ϕ be some quadrature momentum and let ρ̂ =
∣∣0〉〈0∣∣ (the vacuum state of the Fock basis, the

underlying Hilbert space here is L2(R) but could be generalized to L2(Rn) with ease). Let us tackle
the QSD problem for the mixture

N∑
k=1

pke
−itxkP̂ϕ

∣∣0〉〈0∣∣eitxkP̂ϕ (3.110)

where all of the xi are unequal to each other. It will be instructive to reorganize the way in which the
unitary operator e−itxkP̂ϕ is expressed. i.e.

e−itxkP̂ϕ = e
−itxk

(
−i√

2
(eiϕâ−e−iϕâ†)

)
= e

−txk√
2

(eiϕâ−e−iϕâ†) =

= eαk(t)â†−αk(t)∗â, where αk(t) := txke
−iϕ

√
2

.

The unitary operator eαk(t)â†−αk(t)∗â will henceforth be denoted D̂(αk(t)). This operator is known
as the displacement operator [6] [19]. Some of its most useful properties are presented below. Let

∣∣α〉
be some coherent state [19] (also see Chapter 7 of [6]) , then

D̂(β)D̂(γ) = D̂(β + γ)e(βγ∗−β∗γ)/2 (3.111)

D̂(β)
∣∣α〉 = e(βα∗−β∗α)/2∣∣β + α

〉
(3.112)

D̂(α)
∣∣0〉 =

∣∣α〉 (3.113)

The final two properties above give merit to the name "displacement operator" of D̂(β). Using the
latter properties, (3.110) may be shown to be a mixture of coherent states.

Proof.
N∑
k=1

pke
−itxkP̂ϕ

∣∣0〉〈0∣∣eitxk
ˆ̂Pϕ =

N∑
k=1

pkD̂(αk(t))|0⟩⟨0|D̂†(αk(t)) = (3.114)

N∑
k=1

pk
∣∣αk(t)

〉〈
αk(t)

∣∣ (3.115)

It can be shown that
∣∣〈β∣∣α〉∣∣2 = e−|β−α|2 [19] for two arbitrary coherent states

∣∣α〉 and
∣∣β〉. The

latter implies that F
(∣∣αk(t)

〉〈
αk(t)

∣∣, ∣∣αp(t)〉⟨αp(t)|) = e− t2
2 |xk−xp|2 , using (2.47).

Proof.
F
(∣∣αk(t)

〉〈
αk(t)

∣∣, ∣∣αp(t)〉⟨αp(t)∣∣) (3.116)∣∣〈αk∣∣αp〉∣∣2 = e−|αk(t)−αp(t)|2
= (3.117)

e
−| txke−iϕ

√
2

− txpe−iϕ
√

2
|2

= e− t2
2 |xk−xp|2

. (3.118)
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Due to the latter it is indeed clear that F
(∣∣αk(t)

〉〈
αk(t)

∣∣, ∣∣αp(t)〉⟨αp(t)∣∣) → 0 as t → ∞ for k ̸= p.
This in turn means that the mixture (3.110) will be asymptotically discriminable. i.e. using the
generalization of Theorem 3.29, Theorem 3.2.6 we have

lim
t→∞

min
POVM

{
1 −

N∑
i=1

piTr
{

M̂i

∣∣αi(t)〉〈αi(t)∣∣M̂ †
i

}}
≤ (3.119)

lim
t→∞

N∑
i=1

N∑
j;j ̸=i

√
pipj

√
F
(∣∣αi(t)〉〈αi(t)∣∣, ∣∣αj(t)〉⟨αj(t)∣∣) = (3.120)

lim
t→∞

N∑
i=1

N∑
j;j ̸=i

√
pipje

− t2
4 |xi−xj |2

= lim
t→∞

N∑
i=1

N∑
j;j ̸=i

√
pipj lim

t→∞
e− t2

4 |xi−xj |2
= 0 (3.121)

3.4.3 Unitarily Related Countable Mixtures of Arbitrary Displaced Pure
Initial States

Continuing the work of the previous subsection, we proceed with a generalization of the countable
mixture (3.110). In this case, the initial state

∣∣ψ〉〈ψ∣∣ will be taken to be pure, but otherwise arbitrary.
i.e.

N∑
k=1

pkρ̂k,t :=
N∑
k=1

pkD̂(αk(t))
∣∣ψ〉〈ψ∣∣D̂†(αk(t)) (3.122)

where again, αk(t) = txke
−iϕ

√
2 . We will prove that F

(
ρ̂k,t, ρ̂p,t

)
→ 0 as t → ∞ yet again via a

bound characterizing the exponential decay as t → ∞; the associated QSD problem will hence be
solvable in the asymptotic limit t → ∞. This will consequently prove that under such a generalization
the asymptotic QSD problem is still solvable. Before we begin the proof, we must introduce a few
definitions.

Definition 3.4.1 (Segal-Bargmann Space)

The Segal-Bargmann space is the space of holomorphic functions F (z) in n complex variables
satisfying the square-integrability condition:

∥F (z)∥2
SB := π−n

∫
Cn

|F (z)|2 exp(−|z|2) dz < ∞ (3.123)

where dz denotes the 2n-dimensional Lebesgue measure on Cn. It is a Hilbert space with
respect to the associated inner product:

⟨F (z) | G(z)⟩ = π−n
∫
Cn

F (z)G(z) exp(−|z|2) dz. (3.124)

75



Lemma 3.4.1 (Simple Lemma)

If the Holomorphic function F (z) is in the Segal-Bargmann space, then so is the function F (2z).

Proof. This follows from the fact that both 2 and F (z) are in the Segal-Bargmann space and are
therefore measurable with respect to the measure e−|α|2

d2α, and from the fact that the composition
of measurable functions is measurable.

We now prove that F
(
ρ̂k,t, ρ̂p,t

)
→ 0 as t → ∞, but first state it as a Claim.

Claim 3.4.1 (Convergence Claim)

F
(
ρ̂k,t, ρ̂p,t

)
→ 0 as t → ∞ (3.125)

Proof.
D̂†(αp(t))D̂(αk(t)) = 1

π

∫
D̂†(αp(t))

∣∣α〉〈α∣∣D̂(αk(t))d2α = (3.126)

1
π

∫ ∣∣α− αp(t)
〉〈
α− αk(t)

∣∣d2α (3.127)

Where we used the resolution of the identity afforded by the overcomplete set of coherent states, i.e.
1
π

∫ ∣∣α〉〈α∣∣d2α = I [19]. Hence,

〈
ψ
∣∣D̂†(αp(t))D̂(αk(t))

∣∣ψ〉 = 1
π

∫ 〈
ψ
∣∣α− αp(t)

〉〈
α− αk(t)

∣∣ψ〉d2α. (3.128)

The functions

e− 1
2 |α−αk|2

ΨSB((α− αk)∗) := e− 1
2 |α−αk|2

∞∑
n=0

〈
n
∣∣ψ〉 ((α− αk)∗)n√

n!
=
〈
α− αk

∣∣ψ〉 (3.129)

where ΨSB(α∗) belongs to the Segal-Bargman space for an arbitrary
∣∣ψ〉 in the appropriate space of

square-integrable functions. We may therefore write

|
〈
ψ
∣∣D̂†(αp(t))D̂(αk(t))

∣∣ψ〉| =
∣∣∣ 1
π

∫
e− 1

2 |α−αp|2
Ψ∗

SB((α− αp)∗)e− 1
2 |α−αk|2

ΨSB((α− αk)∗)d2α

∣∣∣ ≤ (3.130)

1
π

∫
e− 1

2 |α−αp|2
e− 1

2 |α−αk|2
|ΨSB((α− αp)∗)||ΨSB((α− αk)∗)|d2α = (3.131)

1
π

∫
e− 1

4 |α−αp|2
e− 1

4 |α−αk|2
e− 1

4 |α−αp|2
e− 1

4 |α−αk|2
|ΨSB((α− αp)∗)||ΨSB((α− αk)∗)|d2α ≤ (3.132)

1
π

(∫
e− 1

2 |α−αp|2
e− 1

2 |α−αk|2
d2α

)(∫
e− 1

2 |α−αp|2
e− 1

2 |α−αk|2
|ΨSB((α−αp)∗)|2|ΨSB((α−αk)∗)|2d2α

)
≤ (3.133)

1
π

(∫
e− 1

2 |α−αp|2
e− 1

2 |α−αk|2
d2α

)∥∥∥e− 1
2 |α|2

|ΨSB(α∗)|2
∥∥∥

L∞(C)

∥∥∥e− 1
2 |α|2

|ΨSB(α∗)|2
∥∥∥

L1(C)
= (3.134)

π

2

∥∥∥e− 1
2 |α|2

|ΨSB((α)∗)|2
∥∥∥

L∞

∥∥ΨSB(2α∗)
∥∥

SB
2
(
e

− 1
2

(
ℜ(αp)−ℜ(αk)

)2)(
e

− 1
2

(
ℑ(αp)−ℜ(ℑk)

)2)
= (3.135)
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π

2

∥∥∥e− 1
2 |α|2

|ΨSB(α∗)|2
∥∥∥

L∞

∥∥ΨSB(2α∗)
∥∥

SB

(
e

− ℜ(e−iϕ)2t2
4

(
xp−xk

)2)(
e

− ℑ(e−iϕ)2t2
4

(
xp−xk

)2)
= (3.136)

π

2

∥∥∥e−|α|2
|ΨSB(2α∗)|2

∥∥∥
L∞

∥∥ΨSB(2α∗)
∥∥

SB
e

− t2
4

(
xp−xk

)2

(3.137)

The fucntion ΨSB(α∗) is in the Segal-Bargmann space, hence its accociated Segal-Bargmann norm
exists and the fucntion |e−|α|2 |ΨSB(2α∗)|2 is bounded and

∥∥ΨSB(2α∗)
∥∥
SB

is just a constant by Lemma
3.4.1. We, therefore, conclude that for k ̸= p

F
(
ρ̂p(t), ρ̂k(t)

)
=
∣∣〈ψ∣∣∣D̂†(αp(t))D̂(αk(t))|ψ

〉∣∣∣2 ≤ (3.138)

π

2

∥∥∥e−|α|2
|ΨSB(2α∗)|2

∥∥∥
L∞

∥∥ΨSB(2α∗)
∥∥
SB

e− t2
4

(
xp−xk

)2

(3.139)

which goes to zero as t → 0 due to the Gaussian term.

The associated QSD problem is therefore progressively more solvable as t → ∞. The benefit of the
approach taken in Claim 3.4.1 is the ability to bound the fidelity terms by the Gaussian term. The
weakness of Claim 3.4.1 is that it only gives a handle on unitarily related mixtures that are generated
by displacement operators. If more general unitarily related mixtures are to be studied, we will need
to introduce new ideas.

Another approach.

We have used some tools from quantum optics to argue the asymptotic decay of the fidelity of the
states ρ̂p and ρ̂k when k ̸= p. However, we could also use the spectrum of the displacement operators
D̂(αk(t)) in order to compute F

(
ρ̂p, ρ̂k

)
directly as opposed to bounding it, like we did in proving

Claim 3.4.1. Recall that D̂(αk(t)) = e−itxkP̂ϕ for αk(t) = txke
−iϕ

√
2 . The quadrature momentum P̂ϕ has

purely absolutely continuous spectrum [3]. We will denote its generalized eigenvectors as |pϕ⟩ (Dirac
delta distributions), where the action of p̂ϕ on its generalized eigenvectors is, of course, the following.

P̂ϕ|pϕ⟩ = pϕ|pϕ⟩. (3.140)

We may now compute D̂(αk(t))
∣∣ψ〉 = e−itxkP̂ϕ

∣∣ψ〉 =
∫
e−itxkpϕψ(pϕ)

∣∣pϕ〉dpϕ, which leads to the
equation

F
(
ρ̂p, ρ̂k

)
=
∣∣∣∣ ∫ |ψ(pϕ)|2e−it(xk−xp)pϕdpϕ

∣∣∣∣2 (3.141)

which is a continuous function decaying asymptotically as t → ∞ due to the Reimann-Lebesgue
lemma since |ψ(pϕ)|2 is in L1(R). The hurdle of this approach is the necessity to compute the Fourier
transform of the function |ψ(pϕ)|2, which could be a daunting task. Both approaches, the one leading
to (3.141) and the one leading to the bound (3.139) have their merit.
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3.5 Countable Mixtures of Unitarily Related Families

In this section, we will be restricting our attention to a specific type of ensemble {pi, ρ̂i,t}Ni=1.
Namely, those where

ρ̂i,t := e−itxiB̂∣∣ψ〉〈ψ∣∣eitxiB̂ (3.142)

for some self-adjoint operator B̂ and some pure density operator
∣∣ψ〉〈ψ∣∣ (i.e.

(∣∣ψ〉〈ψ∣∣)2 =
∣∣ψ〉〈ψ∣∣)

both acting in an arbitrary Hilbert space H . All of the operators ρ̂i,t are unitary evolutions of the
density operator ρ̂, with the dynamics being generated respectively by the operators xiB̂. We will see
that the asymptotic discriminability of the mixture

∑N
i=1 piρ̂i,t will depend on the spectral properties

of the operators B̂k and the nature of the pure state
∣∣ψ〉〈ψ∣∣. Using Theorem 3.2.3 we have the

following QSD estimate.

min
POVM

(
1 −

N∑
i=1

piTr
{

M̂iρ̂i,tM̂
†
i

})
≤
∑
i

∑
j;j ̸=i

√
pipj

√
F
(
ρ̂i,t, ρ̂j,t

)
= (3.143)

∑
i

∑
j;j ̸=i

√
pipj

∣∣〈ψ∣∣e−it(xj−xi)B̂∣∣ψ〉∣∣ (3.144)

If fully solvable asymptotic QSD is desired, then it is a necessary and sufficient condition that
the elements

∣∣〈ψ∣∣e−it(xj−xi)B̂
∣∣ψ〉∣∣ of the sum above decay to zero as t → ∞ for all i, j; i ̸= j; it

can be shown to be a necessary condition by using the bound in Theorem 3.2.2. With the latter in
mind, let us first introduce some elements from spectral theory in order to understand when QSD is
asymptotically possible for the setting at hand.

3.5.1 Spectral Decomposition and Spectral Measures

Given some Self-Adjoint operator Â it is known that the residual spectrum of a self-adjoint operator
is empty [8][3]. Hence, given that Â is self-adjoint we have

Spec
(
Â
)

= Specp
(
Â
)

∪ Specac
(
Â
)

∪ Specsc
(
Â
)

(3.145)

where the subscripts ac and sc stand for absolutely continuous and singular continuous respectively.
In order to more formally define absolutely continuous and singular continuous spectra let us consider
an arbitrary

∣∣ψ〉 ∈ H ; H being the Hilbert space that Â acts in. The spectral theory then says that
there exists a unique measure µψ such that [3]

〈
ψ
∣∣Â∣∣ψ〉 =

∫
R
λdµψ(λ). (3.146)

The measure µψ is often called the spectral measure generated by
∣∣ψ〉. By the Lebesgue Decomposition

Theorem one may decompose any measure of this type into its point measure, absolutely continuous
measure, and singular continuous measure components. i.e.

µψ = µψ,p + µψ,ac + µψ,sc. (3.147)
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Of particular interest to us will be the properties of the respective Fourier transforms of each of the
measures on the right-hand side of (3.147). It is a consequence of the Riemann Lebegues Lemma
that the Fourier transform of the measure µψ,ac (absolutely continuous with respect to the Lebesgue
measure) is a function that decays to zero as the argument becomes large. On the other hand, It
can be shown that the Fourier transform of µψ,p will exhibit quasiperiodic behavior while the Fourier
transform of µψ,sc (e.g.Cantor distribution (devils staircase), Dirac measure) is known not to decay
to zero in general; However, there exist singular continuous measures with respective Fourier trans-
form exhibiting the decay properties expected from the Fourier transforms of absolutely continuous
measures. We shall be particularly interested in the subset of measures continuous with respect to
the Lebesgue measures whose Fourier transform decays to zero. These will provide the necessary
dynamics for the bound (3.2.3) to converge to zero for the case of the mixture presented above, i.e.∑N
i=1 piρ̂i,t .

Let Â be a self-adjoint operator acting in some Hilbert space H . The Hilbert space that Â acts
in may furthermore be expressed as a direct sum of three invariant subspaces; one corresponding to
each type of spectrum. Namely, from [8]

H = Hp ⊕ Hac ⊕ Hsc. (3.148)

Recall that the QSD problem may be solved asymptotically iff ∀i ̸= j

∣∣〈ψ∣∣e−it(xj−xi)B̂∣∣ψ〉∣∣ → 0 (as t → ∞) (3.149)

Using the spectral theorem for unitary operators [3] it immediately follows that (3.149) may be written
as ∣∣〈ψ∣∣e−it(xj−xi)B̂∣∣ψ〉∣∣ =

∣∣∣ ∫
R
e−it(xj−xi)λdµψ(λ)

∣∣∣ = (3.150)

∣∣∣ ∫
R
e−it(xj−xi)λdµψ,p(λ)

∣∣∣+
∣∣∣ ∫

R
e−it(xj−xi)λdµψ,ac(λ)

∣∣∣+
∣∣∣ ∫

R
e−it(xj−xi)λdµψ,sc(λ)

∣∣∣. (3.151)

It is now clear why we are interested in the Fourier transforms of the p, ac and sc measures of the
operator B̂. If we expect

∣∣〈ψ∣∣e−it(xj−xi)B̂
∣∣ψ〉∣∣ → 0 as t → ∞, then we know that it will be necessary

(but not sufficient!) for
∣∣ψ〉 ∈ Hac ⊕ Hsc [58]; first and foremost, Hac ⊕ Hsc would of course have

to be non-empty. However, not all
∣∣ψ〉 ∈ Hac ⊕ Hsc will yield the desired dynamics as we already

discussed; everything in Hac will yield the dynamics we want but not everything in Hsc. We must
hence constrain ourselves further the subspace Hrc consisting only of the states

∣∣ψ〉 whose associated
measure µψ is a Rajchman measure [58] (defined below). The associated invariant subspace is exactly
what we need.
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Definition 3.5.1 (Rajchman Measure:)

A finite Borel probability measure µ on R is called a Rajchman measure if it satisfies

lim
|t|→∞

µ̂(t) = 0 (3.152)

where µ̂(t) :=
∫
R e

2iπtxdµ(x) , t ∈ R.

Theorem 3.5.1 (The Rajchman Subspace is a Closed Subspace)

Let Â be a self-adjoint operator acting on some arbitrary Hilbert space H , then the set of
vectors in H for which the spectral measure is a Rajchman measure, i.e.

Hrc :=
{∣∣ψ〉 | lim

|t|→∞

〈
ψ
∣∣e−itÂ∣∣ψ〉 = 0

}
, (3.153)

is a closed subspace which is invariant under e−isÂ[58].

Lemma 3.5.1 (If µψ is Rajchman, then µϕ,ψ is Rajchman)

Let B̂ be some self-adjoint operator acting on a Hilbert space H . Furthermore, let
∣∣ψ〉 ∈ Hrc

and
∣∣ϕ〉 ∈ H , then the respective measure µϕ,ψ is Rajchman.

Proof. ∫
e−itλµϕ,ψ(λ) =

〈
ϕ
∣∣e−itB̂∣∣ψ〉 =

〈
ϕ
∣∣(P̂rce

−itB̂∣∣ψ〉) = (3.154)(〈
ϕ
∣∣P̂rc

)
e−itλ∣∣ψ〉 =

〈
ξ
∣∣e−itB̂∣∣ψ〉 (3.155)

where P̂rc is the projector onto the subspace Hrc and
∣∣ξ〉 := P̂rc

∣∣ϕ〉 ∈ Hrc. We have used the
fact that the Rajchman subspace is invariant under the action of e−itB̂. Now, using the polarization
identity (see [62] chapter 2 Excersise 2.1) we have

〈
ξ
∣∣e−itB̂∣∣ψ〉 = 1

4

3∑
k=0

ik

((〈
ξ
∣∣+ (−i)k

〈
ψ
∣∣)e−itB̂

(∣∣ξ〉+ ik
∣∣ψ〉)) = (3.156)

1
4

3∑
k=0

ik
〈
χk
∣∣e−itB̂

∣∣∣χk〉 (3.157)

where we have defined
∣∣χk〉 :

∣∣ξ〉 + ik
∣∣ψ〉. Hrc is a linear space, hence

∣∣χk〉 ∈ Hrc for k = 0, 1, 2, 3.
Piecing all together.

∫
e−itλµϕ,ψ(λ) = 1

4

3∑
k=0

ik
〈
χk
∣∣e−itB̂

∣∣∣χk〉 = 1
4

3∑
k=0

ik
∫
e−itλdµχk

(λ). (3.158)

As t → ∞
∫
e−itλdµχk

(λ) → 0. Hence
∫
e−itλµϕ,ψ(λ) → 0 as t → ∞.
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We conclude this subsection with the following proposition.

Proposition 3.5.1 (Full Solvability of QSD for URM of Pure States)

Consider the model described in this section by the states (3.67).
∣∣ψ〉 ∈ Hrc corresponding to

B̂ iff
lim
t→∞

min
POVM

pE

{{
pi, e

−itxiB̂∣∣ψ〉〈ψ∣∣eitxiB̂}N
i=1, {M̂l

}K
l=1

}
= 0 (3.159)

Proof. This immediately follows from Theorems 3.2.3 and 3.2.2.

3.6 Unitarily Related Mixtures of Finite Mixtures

Let us now consider the case where

ρ̂ =
N∑
i=1

piρ̂i ∈ S(H ), (3.160)

with

ρ̂i =
M∑
j=1

ηij
∣∣ϕij〉〈ϕij∣∣ (3.161)

With all of the
∣∣ϕij〉〈ϕij∣∣ ∈ S(H ) and

∑
j ηij = 1. In such a case we may again utilize Theorem 3.2.3

to begin with.
min
POVM

pE(t) ≤
∑
i

∑
j;j ̸=i

√
pipj

√
F
(
ρ̂i, ρ̂j

)
(3.162)

however, the fidelities in this case are not immediately manageable owing to the fact that both ρ̂i and
ρ̂j are booth mixed states. To overcome this hurdle we will use a bound for quantum fidelities found
in [65]. Namely,

Theorem 3.6.1 (Fidelity Bound Koenraad and Milan [65])

Let
∑
i piρ̂i be an arbitrary countable mixture and let σ̂ be an arbitrary density operator;

both acting on the same arbitrary Hilbert space. Then,√
F
(∑

i

piρ̂i, σ̂
)

≤
∑
i

√
pi

√
F
(
ρ̂i, σ̂

)
(3.163)

Note that this theorem for the general case of an infinite mixture would require that √
pi ∈ ℓ

(
R
)

in or more knowledge regarding the fidelities √
pi

√
F
(
ρ̂i, σ̂

)
in order for us to profit from such a bound.

Applying Theorem 3.6.1 twice we may further bound (3.162) to obtain

min
POVM

pE ≤
∑
i

∑
j;j ̸=i

√
pipj

M∑
k=1

M∑
k′=1

√
ηik

√
ηik′

√
F
(∣∣ϕik〉〈ϕik∣∣, ∣∣ϕjk′

〉〈
ϕjk′

∣∣) = (3.164)
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∑
i

∑
j;j ̸=i

√
pipj

M∑
k=1

M∑
k′=1

√
ηikηjk′

∣∣〈ϕik∣∣ϕjk′
〉∣∣ (3.165)

We hence see that the optimal probability error may be controlled by the inner products
∣∣〈ϕik∣∣ϕjk〉∣∣

(i ̸= j), which are relatively easy to compute. We now provide a generalization to Proposition 3.5.1.

Theorem 3.6.2 (Full Solvability of QSD for URM of Finite Mixtures)

Let H be infinite-dimensional Hilbert space. Let B̂ be a self-adjoint operator acting in H

with a non-empty Rajchman subspace. Furthermore, let ρ̂i :=
∑Mi

j=1 ηij
∣∣ϕij〉〈ϕij∣∣ be finite

mixtures in S
(
H
)

for each i. Then,

lim
t→∞

min
POVM

pE

{{
pi, e

−itxiB̂ρ̂ie
itxiB̂}N

i=1, {M̂l

}K
l=1

}
= 0 (3.166)

iff all of the
∣∣ϕij〉 ∈ Hrc of B̂.

Proof. First we assume that
∣∣ϕij〉 ∈ Hrc of B̂ for all ij. Now, using (3.165) we have

min
POVM

pE(t) ≤
∑
i

∑
j;j ̸=i

√
pipj

Mi∑
k=1

Mj∑
k′=1

√
ηikηjk′

∣∣〈ϕik∣∣e−it(xj−xi)B̂∣∣ϕjk〉∣∣ (3.167)

Since all of the sums above are finite, we need only worry about the limits

lim
t→∞

∣∣〈ϕik∣∣e−it(xj−xi)B̂∣∣ϕjk〉∣∣ (3.168)

but by Lemma 3.5.1 these all go to zero as t → ∞. We have therefore proven one direction of the
theorem.

Going the other way we shall prove the contrapositive. Assume that
∣∣ϕij〉 /∈ Hrc for all ij. Using

Theorem 3.2.2, followed by Theorem 3.2.5, we have

min
POVM

pE(t) ≥ 1
2
∑
i

∑
j;j ̸=i

pipjF
(
e−txiB̂ρ̂ie

txiB̂, e−txjB̂ρ̂je
txiB̂

)
≥ (3.169)

1
2
∑
i

∑
j;j ̸=i

pipj

(min
{
Mi,Mj

}∑
k=1

√
ηikηjk

∣∣〈ϕik∣∣e−it(xj−xi)B̂∣∣ϕjk〉∣∣2)2

(3.170)

In this case the terms
∣∣〈ϕik∣∣e−it(xj−xi)B̂

∣∣ϕjk〉∣∣2 will be bounded away from zero infinitely often. Mak-
ing minPOVM pE(t) bounded away from zero infinitely often. Hence, asymptotic QSD is impossible.
The theorem has been proved.
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Corollary 3.6.1 (QSD 2 with
∑
j

√
ηij < ∞ for all j)

Theorem 3.6.2 may be extended to the cases where the finite mixtures ρ̂i are replaced by
infinite mixtures ρ̂i :=

∑∞
j=1 ηij

∣∣ϕij〉〈ϕij∣∣, where now
∑∞
j=1 ηij = 1 for all i, if

∑
j

√
ηij < ∞

for all i. The argument follows by applying the dominated convergence theorem to the first
part of our proof for Theorem 3.6.2.

Corollary (3.6.1) gives us a way to work with the spectral decomposition of the operators in the
mixtures

∑
i pie

−itxiB̂ρ̂ie
itxiB̂, so long as the sequence

√
λij of square-rooted eigenvalues of each ρ̂i

is summable with respect to j.

3.7 Uncountable Mixtures

Consider the case where instead of a countable mixture, as seen in (3.1), we have an uncountable
one.

ρ̂t :=
∫
p(x)ρ̂x,tdx (3.171)

where ρ̂x,t := e−itxB̂
∣∣ψ〉〈ψ∣∣eitxB̂,

∣∣ψ〉〈ψ∣∣ some initial state in S
(
H
)
, H an infinite dimensional

Hilbert space, B̂ a self-adjoint operator acting in H and
∫
p(x) = 1. The states ρ̂x,t are akin

to the archetypal ensembles which are the main focus of QSD. In the literature [22] [25] [72] [27]
for QSD, one almost always encounters ensembles of the form

∑
i piρ̂i ( pi is a discrete probability

distribution) and the task is of course to find a POVM that minimizes
∑
i piTr

{
ρ̂i − M̂ iρ̂iM̂

†
i

}
while satisfying

∑
i M̂†

iM̂i = I. If we wanted to discriminate all of the ρ̂x from each other, with high
precision, we would expect that F

(
ρ̂x, ρ̂y) should go to zero as t → ∞ for all x ̸= y. To see that

the latter is not the case in general, recall that F
(
ρ̂x, ρ̂y) = |

〈
ψ
∣∣e−it(y−x)B̂

∣∣ψ〉|. Indeed, for fixed
x ̸= y, |

〈
ψ
∣∣e−it(y−x)B̂

∣∣ψ〉| → 0 as t → ∞ whenever
∣∣ψ〉 ∈ Hrc (Rajchman subspace associated with

B̂). However, if we choose y and x at every t such that x − y = α
t , then it is clear that no matter

how large t is there will always be x and y (x ̸= y) such that F
(
ρ̂x, ρ̂y) = |

〈
ψ
∣∣e−iαB̂

∣∣ψ〉|. If α is
small, then F

(
ρ̂x, ρ̂y) may be close to one. We therefore abandon the idea of discriminating all of

the ρ̂x from one another and will instead support ourselves on the already existing theory of QSD
for countable mixtures. We will do this by defining an N -mixture associated with the uncountable
mixture (3.171). To motivate the latter let us first consider a partition of the support of p(x) with N
terms, i.e. ∪Ni=1Ωi = supp

{
p(x)

}
. Using this partition we may rewrite (3.171) as follows.

∫
p(x)ρ̂xdx =

N∑
i=1

∫
Ωi

p(x)ρ̂x,tdx. (3.172)

Next we define some new terms, pi :=
∫

Ωi
p(x)dx and p̄(x) := p(x)

pi
. With these terms we further

rewrite (3.172).i.e.
N∑
i=1

∫
Ωi

p(x)ρ̂x,tdx =
N∑
i=1

piΛi,t
(∣∣ψ〉〈ψ∣∣) (3.173)
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Where Λi,t
(∣∣ψ〉〈ψ∣∣) :=

∫
Ωi
p̄(x)e−itxB̂

∣∣ψ〉〈ψ∣∣eitxB̂dx :=
∫

Ωi
p̄(x)e−itxB̂

∣∣ψ〉〈ψ∣∣eitxB̂dx. Notice that in
(3.174) pi is a discrete probability distribution and each Λi,t

(∣∣ψ〉〈ψ∣∣) is indeed a density operator (not
pure). The fact that the t = 0 state was defined to be pure was immaterial, so we replaced it with a
general state in the following. Let us now formally define an N -mixture of a particular uncountable
mixture.

Definition 3.7.1 (N-mixture)

Let ρ̂ :=
∫
p(x)ρ̂xdx be some uncountable mixture. We call the following an N -mixutre of ρ̂

with respect to some partition ∪Ni=1Ωi (of N elements) of the support of p(x).

N∑
i=1

piρ̂i,t (3.174)

where pi :=
∫

Ωi
p(x)dx, p̄(x) := p(x)

pi(t) and ρ̂i,t :=
∫

Ωi
p̄(x)ρ̂x,tdx. We emphasize that this is not

an approximation but merely a way of rewriting ρ̂; also note that the ρ̂i are density operators.

Given the mixture (3.174), we can use the theory of countable mixture QSD in order to estimate
an optimal POVM that minimizes

∑
i piTr

{
ρ̂i,t − M̂ i,tρ̂i,tM̂

†
i,t

}
(in this case ρ̂i,t :=

∫
Ωi
p̄(x)ρ̂x,tdx),

and in the case where finding the minimizing POVM is not possible we may bound the min error by
making use of the Knill Barnum bound (3.29) [27] in order to study the theoretical effectiveness of
the related QSD problem with respect to t, i.e. we would like to know if the associated QSD problem
is fully solvable with respct to t or not. We now formalize the QSD problem for uncountable mixtures
(UQSD).

Definition 3.7.2 (QSD for uncountable mixtures (UQSD))

Let H be an arbitrary Hilbert space. Now, consider the unaccountably mixed state ρ̂t :=∫
p(x)e−itxB̂ρ̂eitxB̂dx, p(x) a probability density, ρ̂ ∈ S

(
H
)

some initial state, and B̂ a self
adjoint operator (acting in H ). Furthermore, consider an N -mixture of ρ̂t with respect to some
partition of the support of p(x), ∪Ni=1Ωi (N elements). We call the associated optimization
problem below the UQSD problem induced by the partition ∪Ni=1Ωi,

min
POVM

N∑
i=1

pi

(
1 − Tr

{
M̂iρ̂i,tM̂

†
i

})
(3.175)

where now pi :=
∫

Ωi
p(x)dx, p̄i(x) := p(x)

pi
and ρ̂i,t :=

∫
Ωi
p̄i(x)e−itxB̂ρ̂eitxB̂dx.

An uncountable number of N -mixtures may be generated for any given uncountable mixture. If no
constraints on the magnitudes of the Ωi are posed, trivial N mixtures might be devised. e.g. consider
the case of a 2-Mixture for some uncountable mixture

∫
p(x)ρ̂xdx. For every ε > 0 we may choose Ω2

such that
∥∥ ∫

Ω2
p̄(x)ρ̂xdx

∥∥
1 = ε. Consequently

∥∥ ∫
Ω1
p̄(x)ρ̂xdx

∥∥
1 ≥ 1−ε where Ω1 = supp

{
p(x)

}
−Ω2.
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Using the Hellström bound we get the following result.

min
POVM

pE

{{
pi,

∫
Ωi

p(x)ρ̂xdx
}2

i=1
, {M̂l

}2
l=1

}
= (3.176)

1
2 − 1

2

∥∥∥∥∫
Ω1

p(x)ρ̂xdx−
∫

Ω2

p(x)ρ̂xdx
∥∥∥∥

1
≤ (3.177)

1
2 − 1

2

∣∣∣∣∥∥∥ ∫
Ω1

p(x)ρ̂xdx
∥∥∥∥

1
−
∥∥∥∫

Ω2

p(x)ρ̂xdx
∥∥∥∥

1

∣∣∣∣ = (3.178)

1
2 − 1

2

∣∣∣∣∥∥∥ ∫
Ω1

p(x)ρ̂xdx
∥∥∥∥

1
− ε

∣∣∣∣ ≤ 1
2 − 1

2

∣∣∣∣1 − 2ε
∣∣∣∣ ≈ 0 (3.179)

We will hence only be interested in the UQSD optimization problem induced by partitions ∪Ni=1Ωi
with magnitude constraints. i.e. ∆i,L ≤ |Ωi| ≤ ∆i,U for every i. e.g. |Ωi| > ∆ for all i. Which
N -mixtures are physical and which are not is a question that has not been addressed as of yet and
would be and be a problem best addressed through the lens of Quantum Metrology [15], a topic which
is beyond the scope of this work.

Now that we have defined QSD for uncountable mixtures, we may ask ourselves if an adaptation
of Proposition 3.5.1 is possible for this setting. Morally speaking this must be so; however, due to
the intractability of the fidelity F

(
ρ̂, σ̂

)
for the case where both ρ̂ and σ̂ are not pure states, the

argument is not as direct as it was in Proposition 3.5.1 and owing to the uncountably mixed nature of
the operators ρ̂i,t from (3.175) we may not apply the techniques all of the techniques used in proving
Theorem 3.6.2. We encapsulate the latter in the latter discussion in the following conjecture.

Proposition 3.7.1 (Necessary and Sufficient Conditions for Full Solvability of
UQSD for URM:)

Consider the setup of Definition 3.7.2. We conjecture that the UQSD optimization problem
induced by a partition ∪Ni=1Ωi is fully solvable as t → ∞ iff ρ̂ ∈ S

(
Hrc

)
, where Hrc is the

Rajchman subspace of the operator B̂.

As a finishing note, we motivate Conjecture 3.7.1. For this, we will need the super fidelity.

Theorem 3.7.1 (Super Fidelity [71])

For any two density operators ρ̂ and σ̂, then

F
(
ρ̂, σ̂

)
≤ Tr

{
ρ̂σ̂
}

+
√(

1 − Tr
{

ρ̂2})(1 − Tr
{

σ̂2}) (3.180)

Let us now consider the uncountable unitarily related mixture
∫
p(x)e−itxB̂

∣∣ψ〉〈ψ∣∣eitxB̂dx where∣∣ψ〉 ∈ Hrc of B̂. Let p(x) be a bimodal probability density p(x) = 1
2 (p1(x) + p2(x)) of two probability

densities with non overlapping compact support. Let ∆1 ⊂ R and ∆2 ⊂ R be their supports respec-
tively. Now, for ∆1 and ∆2 with any magnitude, i.e. δ1 :=

∣∣∆1
∣∣ and δ2 :=

∣∣∆2
∣∣ and for any ε1 > 0
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we may find a time domain T := [0, Tε] so that

Tr

{(∫
pi(x)e−itxB̂∣∣ψ〉〈ψ∣∣eitxB̂dx

)2}
≥ 1 − ε (3.181)

for all t ∈ T and i = 1, 2. Furthermore, with T fixed, for any ε2 > 0 we can choose dist
(
∆1,∆2

)
such that

Tr

{∫
p1(x)e−itxB̂∣∣ψ〉〈ψ∣∣eitxB̂dx

∫
p2(x)e−itxB̂∣∣ψ〉〈ψ∣∣eitxB̂dx

}
< ε2 (3.182)

Proof. Fix ε2 > 0 and let t′ ∈ T . Now,

Tr

{∫
p1(x)e−itxB̂∣∣ψ〉〈ψ∣∣eitxB̂dx

∫
p2(x)e−itxB̂∣∣ψ〉〈ψ∣∣eitxB̂dx

}
= (3.183)

∫ ∫
p1(x)p2(x)

∣∣∣〈ψ∣∣e−it(y−x)B∣∣ψ〉∣∣∣2dxdy (3.184)

∣∣ψ〉 ∈ Hrc of B̂ hence limα→∞
〈
ψ
∣∣e−iαB̂

∣∣ψ〉 = 0. This means that there exists a δ > 0 such that for
all α > δ we have |

〈
ψ
∣∣e−iαB̂

∣∣ψ〉| ≤ √
ε2. Choosing dist

(
∆1.∆2

)
t′ > δ we therefore have∫ ∫

p1(x)p2(x)
∣∣∣〈ψ∣∣e−it(y−x)B∣∣ψ〉∣∣∣2dxdy ≤

∫ ∫
p1(x)p2(x)|√ε2|2dxdy = ε2 (3.185)

for all t ∈ [t′, T ].

With the latter and the use of Theorem 3.7.1 we have the following result.

F

(∫
p1(x)e−itxB̂∣∣ψ〉〈ψ∣∣eitxB̂dx,

∫
p2(x)e−itxB̂∣∣ψ〉〈ψ∣∣eitxB̂dx

)
≤ ε2 + ε1 (3.186)

meaning that we may approximately solve the UQSD problem for the 2-mixture
∑2
i=1 piρ̂i where

p1 = p2 = 1
2 and of course ρ̂i :=

∫
pi(x)e−itxB̂

∣∣ψ〉〈ψ∣∣eitxB̂dx. We can proceed similarly for a multi-
mode probability density. We can always place the lumps far enough apart from one order in such a
way that we may observe decay in the optimal probability of error long before we see an error in our
bound due to our super fidelity estimate estimates. It is clear that

∣∣ψ〉 ∈ Hrc of B̂ plays a key role in
going from (3.184 to (3.185); without this assumption our conclusion is not attainable.

3.7.1 UQSD Using a Particular PVM

We have already seen a successful POVM scheme for the discretely mixed state QSD problem in
Theorem 3.3.1. We can adapt such a setting to the case of an analogous uncountable mixture; we
assume the same transnational dynamics for the states ρ̂x,t := e−itxB̂ρ̂eitxB̂, we may apply a similar
POVM as was applied in Theorem 3.3.1, but in this case the POVM will be a countably infinite set
of projector operators, i.e. an N -mixture per Definition 3.7.1 ( N may be infinity if the support of
p(x) is the entire real line). We will assume a specific partitioning of the support of p(x) uniform in
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time. Namely ∆i = ((xi−1+xi

2 ), (xi+xi+1
2 )) for 1 < i < N − 1, ∆1 :=

(
inf
(
supp

(
p(x)

))
, (x0+x1

2 )
)

,

∆N :=
(

(xN−1+xN

2 ), sup
(
supp

(
p(x)

)))
and {xi}N−1

i=0 is a net of the support of p(x). Furthermore

let Ωi,t := (t(xi−1+xi

2 ), t(xi+xi+1
2 )) for 1 < i < N − 1, Ω1,t :=

(
inf
(
tsupp

(
p(x)

))
, t(x0+x1

2 )
)

, ΩN,t :=(
t(xN−1+xN

2 ), t sup
(
supp

(
p(x)

)))
. We will use the same N for all t To tackle the uncountable

QSD problem, Definition 3.7.2, for this associated N -mixture we utilize the PVM {P̂Ωi,t}i, which
are projectors projecting onto the subspaces generated by the subset Ωi,t. Using such a POVM the
respective uncountable QSD problem is bounded as follows.

min
POVM

N∑
i=1

pi(t)
(

1 − Tr
{∫

∆i

p̄i(t, x)M̂i,tρ̂x,tM̂
†
i,tdx

})
≤ (3.187)

1 −
N∑
i=1

pi(t)
∫

∆i

p̄i(x)
∫ t

xi+1+xi
2 −tx

t
xi−1+xi

2 −tx
K(x′, x′)dx′dx. (3.188)

We see that as t becomes large (3.188) indeed approaches 0, meaning that there exists a POVM such
that the QSD problem, Definition (3.7.2), is approximately solved with high accuracy. The latter
follows from the fact that the limits of integration txi−1+xi

2 − tx and txi+1+xi

2 − tx are respectively
negative and positive for all x ∈ Ωi,t (except for the endpoints, which form a set of measure zero;
causing no issues in the integration). The latter means that the sets

[
txi−1+xi

2 − tx, txi+1+xi

2 − tx
]

approaches R as t → ∞. Hence,
∫ t xi+1+xi

2 −tx
t

xi−1+xi
2 −tx

K(x′, x′)dx′ → 1 as t → ∞ which leads to (3.188)
going to zero as t → ∞. Although a very specialized case, this Uncountable QSD problem instills
further confidence in Conjecture 3.7.1 and gives a schematic of how one might generate estimates for
uncountable QSD in the cases where the Hilbert space in question is some space of square-integrable
functions and the unitary dynamics in question are translational.

3.8 What if the B̂ is Finite-Dimensional

The previous discussions might lead one to believe that there is no asymptotic QSD for the case
where Ĥ is a finite-dimensional Hilbert paces. Indeed homologs to Theorem 3.6.2, Corollary 3.6.1,
Propositions 3.5.1 and 3.7.1 is not possible per se, but one may approximately solve the associated
QSD problem within some relevant time domain t ∈ [0, T ]. To see this let us once again consider the
inner products

〈
ψi,t
∣∣ψj,t〉 that we scrutinized in the previous sections. In this case, however, B̂ will

be finite-dimensional and have pure point spectrum (eigenvalues) bi with associated eigenvectors
∣∣bi〉.〈

ψi,t
∣∣ψj,t〉 =

〈
ψ0
∣∣e−it(xj−xi)B̂∣∣ψ0

〉
=
∑
l

e−it(xj−xi)bl |
〈
bj
∣∣ψ0
〉
|2. (3.189)

A sum such as 3.189 is an almost-periodic function. There are various ways in which almost-periodic
functions are defined, but we will stick with the definition posed by [57] (which interestingly enough,
is a paper authored by Niels Bohr’s brother Harold Bohr.).
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Definition 3.8.1 (Uniformly almost-periodic functions)

A function is said to be uniformly almost-periodic if it lies in the closure of the trigonometric
polynomials with respect to the uniform norm ∥f∥∞ := supx |f(x)|

It is clear that (3.189) lies in the closure of the space of trigonometric polynomials since each of the
terms in the sum is a periodic function of t which may be approximated to arbitrary precision via a
series of complex exponentials with the same period. The sum (3.189) may therefore be estimated by
a multi-indexed sum (one index for each term in (3.189)) which consists of trigonometric monomials.
In [57] it was proven that Definition 3.8.1 is equivalent to the existence of relatively dense sets of
so-called ε-periods, for all ε > 0; i.e. translations by τ(ε) ( a time parameter dependent on ε) of the
t resulting in the following bounds.

|f(t+ τ(ε)) − f(t)| ≤ ε (3.190)

where f(x) is some almost-periodic function.

Our hurdles stemming from (3.189) may now be formally described. We would like to achieve an
approximate asymptotic QSD in t for the case where B̂ acts in a finite-dimensional Hilbert space.
For this to occur we will need the inner products 3.189 corresponding to each B̂ to be small. Being
a finite-dimensional operator, B̂ does not have an associated Rajchman subspace. We must therefore
rely on the largeness of the dimension of B̂ and the size of the particular time domain of interest. We
have that the respective function (3.189) is almost-periodic. Hence, given some arbitrary time domain
t ∈ [0, T ] there exists the possibility that∣∣∣∑

l

e−i0(xj−xi)bl |⟨bj |ψ0⟩|2 −
∑
l

e−iτ(xj−xi)bj |⟨bl|ψ0⟩|2
∣∣∣ = (3.191)

∣∣∣∑
l

|⟨bl|ψ0⟩|2 −
∑
j

e−iτ(xj−xi)bj |⟨bj |ψ0⟩|2
∣∣∣ =

∣∣∣1 −
∑
l

e−iτ(xj−xi)bl |⟨bj |ψ0⟩|2
∣∣∣ < ε (3.192)

for some arbitrary small ε > 0 and 0 ≤ τ ≤ T . i.e. it could be the case that our operator (4.40)
returns to the state it was in at t= 0 after having evolved for an amount τ of the unit time. Since
the time window of interest is [0, T ] and τ ≤ T , this would mean that we can not achieve SBS in such
a time domain. This of course follows immediately from the bound in Theorem 3.2.2. In such a case
the lower bound of Theorem 3.2.2 is maximized.

If however, we are given some time interval [0, T ], where
〈
ψi,t
∣∣ψj,t〉 is sharply decaying with respect

to some time scale τ much smaller than T (the relevant time frame) and
〈
ψi,t
∣∣ψj,t〉 stabilizes to zero

long before t approaches T , then we may conclude that convergence Asymptotic QSD with respect to
the time scale τ is achievable. To see that the latter may be achieved let us consider the case where∣∣ψ0
〉

is some tensor product state ∣∣ψ0
〉

=
Nmac⊗
k=1

∣∣ψk0〉 (3.193)
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and

B̂ =
Nmac∑
k=1

B̂k (3.194)

with each
∣∣ψk0〉 ∈ Hk (finite dimensional Hilbert spaces) and B̂k some linear self-adjoint operator

acting in Hk. In this case

〈
ψi,t
∣∣ψj,t〉 =

(
Nmac⊗
k=1

〈
ψk0
∣∣)(e−it(xj−xi)

∑Nmac

k=1
gkB̂k

)(Nmac⊗
k=1

∣∣ψk0〉
)

= (3.195)

(
Nmac⊗
k=1

〈
ψk0
∣∣)(Nmac⊗

k=1
e−it(xj−xi)gkB̂k

∣∣ψk0〉
)

=
Nmac∏
k=1

〈
ψk0
∣∣e−itgk(xj−xi)B̂k

∣∣ψk0〉 (3.196)

Nmac∏
k=1

∑
j

e−itgk(xj−xi)bk
j

∣∣〈bkj ∣∣ψk0〉∣∣2. (3.197)

Each term in the latter product consists of a bounded sum∣∣∣∑
l

e−itgk(xj−xi)bk
l

∣∣〈bkj ∣∣ψk0〉∣∣2∣∣∣ ≤ 1. (3.198)

The magnitude of (3.197) is therefore bounded between 0 and 1, since it is a product of terms whose
respective magnitudes are also bounded between 0 and 1. If Nmac is large enough, then for a given
τ ∈ [0, T ] it can be shown that

∣∣〈ψi,t∣∣ψj,t〉∣∣ may be bounded from above via a time-independent
bound of desired magnitude. We now formalize the latter. Let 0 < ε′ < 1 and assume that for
all k, 1 −

∣∣∑
l e

−itgk(xj−xi)bk
l

∣∣ > ε′
k > 0 for all t ∈ [τ, T ] (τ > 0 and τ << T ), then the functions∑

l e
−itgk(xj−xi)bk

l

∣∣〈bkj ∣∣ψk0〉∣∣2 do not have ε-periods for ε = ε′
k. i.e.∣∣∣1 −

∑
l

e−itgk(xj−xi)bk
l

∣∣〈bj |ψ0
〉
|2
∣∣∣ ≥

∣∣∣1 −
∣∣∣∑

l

e−itgk(xj−xi)bk
l |⟨bj |ψ0⟩|2

∣∣∣ = (3.199)

1 −
∣∣∣∑

l

e−itgk(xj−xi)bk
l |
〈
bj
∣∣ψ0
〉
|2 ≥ ε′

k. (3.200)

Furthermore, ∣∣∑
l

e−itgk(xj−xi)bk
l

∣∣〈bj∣∣ψ0
〉∣∣2∣∣ ≤ 1 − ε′

k (3.201)

for all t ∈ [τ, T ]. Note that 1 − ε′
k < 1, hence picking up from (3.197) we have∣∣∣∣∣

Nmac∏
k=1

∑
j

e−itgk(xj−xi)bk
j

∣∣〈bkj ∣∣ψk0〉∣∣2
∣∣∣∣∣ ≤

Nmac∏
k=1

(1 − ε′
k) ≤ (1 − min

k
ε′
k)Nmac . (3.202)

We may therefore conclude that if we desire∣∣∣∣∣
Nmac∏
k=1

∑
j

e−it(xj−xi)bk
j

∣∣〈bkj ∣∣ψk0〉∣∣2
∣∣∣∣∣ ≤

Nmac∏
k=1

(1 − ε′
k) = δ (3.203)
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for some small δ > 0, we can choose Nmac = ln(δ)
ln(1−mink ε′

k
) in order to obtain such a bound. We,

therefore, see that the size of the parameter Nmac is responsible for the smallness of (3.197). Returning
now to the question of asymptotic QSD for finite-dimensional Hilbert spaces; we have seen that such a
QSD problem may be approximately solved over a time domain [τ, T ] in a sense, given a large enough
Nmac. Very quickly after τ time elapses (3.197) attains the smallness desired and therefore we achieve
an approximately discriminable state for the time interval [τ, T ] with τ << T .
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Chapter 4

SBS for Discrete Variables

4.1 Work by Jarek et all

In recent times significant attention has been given to a family of multipartite states named Spectrum
Broadcast Structures (SBS) [38] [39] [40] [53]. Since its genesis, the theory of SBS has been used as a
tool in the discipline of Quantum Foundations; particularly in the theories of Quantum Decoherence
and Quantum Darwinism[12][31][41][42]. Recently, quantum darwinism and SBS theory have been
shown to be equivalent under certain technical assumptions[43]. Motivating the theory of quantum
darwinism and the theory of SBS is the question of objectivity in the quantum world. To avoid
philosophical contention [38] [39] and[40] provide a definition of objectivity motivated by properties
of classical dynamical systems. The multipartite quantum mechanical state satisfying such properties
is called a SBS. The definition of objectivity proposed in [38] is:

Definition 4.1.1 (Objectivity [38][39][40])

A state of the system S exists objectively if many observers can find out the state of S inde-
pendently, and without perturbing it.

There are two clauses in the definition above that are ambiguous, namely, "can find out the state of
S" and "without perturbing it". The first of these means that any of the observers may locally solve a
QSD (3.21) estimation problem that allows the observer to identify the state of the system S by proxy.
The second clause, "without perturbing it" may be formalized by introducing a distance measure. We
will only be using the trace distance, but different distance measures may be more relevant in other
scenarios. The following definition proposed in [38] is a mathematical formalization of Definition 4.1.1
and is what we will refer to as a SBS.
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Definition 4.1.2 (SBS [38][39][40])

A Spectrum Broadcast Structure is a multipartite state (also called joint state) of a system S

and an environment E, consisting of sub-environments E1, E2, ..., ENE :

ρ̂SBS =
∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i (4.1)

where {|i⟩}i is some basis in the system’s space, pi are probabilities summing to one, and all
states ρ̂E

k

i are perfectly distinguishable in the following sense:

F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 (4.2)

for all i ̸= j and for all k = 1, ..., NE . Recall that F (..., ...) is the quantum fidelity, and is
defined as F

(
ρ̂, σ̂

)
:=
∥∥√

ρ̂
√

σ̂
∥∥2

1 (2.44).

In [38] it is argued that SBS satisfies the desired definition of objectivity and that it is the only
structure that satisfies such a definition. The argument for why the observer monitoring (i.e. employ-
ing measurements characterized via a POVM) El may find out the state of S independently is the
following. Let us analyze the local state pertaining to El; to do this we partially trace out the degrees
of freedom pertaining to the system S and all of the environments Ek with the exception of the lth
environment. i.e. from (4.1) we obtain

∑
i

pi

(∏
k ̸=l

TrEk

{
ρ̂E

k

i

})
⟨i|i⟩ρ̂E

l

i =
∑
i

piρ̂
El

i . (4.3)

Notice that this is a mixed state. If F
(
ρ̂E

l

i , ρ̂E
l

j

)
= 0 for i ̸= j then the QSD problem may be opti-

mally solved. This means that there exists a POVM which the observer monitoring the environment
El may utilize to conduct measurements on El yielding perfect distinguishability between the possi-
ble outcomes of the mixture (4.3). Furthermore, the state ρ̂E

l

i is correlated with the state
∣∣i〉〈i∣∣ of

S in the sense that when S is found to be in the state
∣∣i〉〈i∣∣ the lth environment will be found in

the state ρ̂E
l

i . Owing to the perfect distinguishability between the states ρ̂E
l

i for all i, there is no
ambiguity regarding the state of S given that El is found to be in the state ρ̂E

l

i . Since l was taken to
be arbitrary it is clear that any environmental observer may find out the state of S faithfully so long
as F

(
ρ̂E

l

i , ρ̂E
l

j

)
= 0 for i ̸= j is satisfied.

To argue non-disturbance (a similar approach follows for approximate non-disturbance) we first
re-emphasize that the "can find out" in Definition 4.1.1 formally means that for every Ek there exists
a POVM {ÊEk

i }i that solves the respective local QSD problem, i.e. that discriminates perfectly the
mixture (4.3). {

⊗NE

k=1 ÊEk

ik
}i1,i2,...,iNE

will hence be a POVM acting on S
(
HS

⊗NE

k=1 HEk

)
. If the

POVM optimally solving the local QSD problem for each environment El does so in a non-perturbing
way, i.e. not changing the state after the associated measurement quantum channel has been applied
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in the trace distance sense, then the measurement associated with the POVM {
⊗NE

k=1 ÊEk

ik
}i1,i2,...,iNE

may be shown to also be non-disturbing with respect to the trace distance. i.e. it can be shown that

1
2

∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i −
∑
i1

∑
i2

...
∑
iNE

(∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

ik
ρ̂E

k

i

(
M̂Ek

ik

)†
)∥∥∥∥

1
= 0 (4.4)

where
(

M̂Ek

ik

)†
M̂Ek

ik
= ÊEk

ik
. i.e. Given the perfect distinguishability of the ρ̂E

k

i for each k, a POVM
{ÊEk

ik
}ik may be devised such that

M̂Ek

ik
ρ̂E

k

i

(
M̂Ek

ik

)†
= δiki. (4.5)

With (4.5) in mind, we may estimate the trace distance in (4.4).

1
2

∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i −
∑
i1

∑
i2

...
∑
iNE

(∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

ik
ρ̂E

k

i

(
M̂Ek

ik

)†
)∥∥∥∥

1
= (4.6)

1
2

∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i −
∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥

1
≤ (4.7)

1
2
∑
i

pi

∥∥∥∥ NE⊗
k=1

ρ̂E
k

i −
NE⊗
k=1

M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥

1
(4.8)

To proceed we introduce the following lemma.

Lemma 4.1.1 (Telescopic inequality [40])

Let Âk and B̂k be trace class operators for all k. Then,

∥∥∥ N⊗
k=1

Âk −
N⊗
k=1

B̂k
∥∥∥

1
≤ (4.9)

N∑
j=1

( j−1∏
k=1

∥∥Âk
∥∥

1

)
×
∥∥Âj − B̂j

∥∥
1 ×

( N∏
k=j+1

∥∥B̂k
∥∥

1

)
(4.10)

Using Lemma 4.1, (4.8) may be bounded as follows.

1
2
∑
i

pi

∥∥∥∥ NE⊗
k=1

ρ̂E
k

i −
NE⊗
k=1

M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥

1
≤ 1

2

NE∑
k=1

∑
i

pi

∥∥∥∥ρ̂E
k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥

1
. (4.11)

We claim that the distinguishability criterion F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 ( i ̸= j) for all k is a necessary and

sufficient condition for (4.11) to vanish. For the case of perfect distinguishability, the sufficiency is
immediately clear since each ÊEk

i may be chosen to be a projector onto the domain of ρ̂E
k

i respectively,
meaning that M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
= ρ̂E

k

i which in turn implies that
∥∥ρ̂E

k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†∥∥
1 = 0.
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The argument becomes more transparent in the case where all of the ρ̂E
k

i are projectors. In such a
case we simply choose ÊEk

i = ρ̂E
k

i .

The distinguishability condition F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 (i ̸= j) for all k is of course an idealization; in

practice there will always be some error involved in the distinguishability measures F
(
ρ̂E

k

i , ρ̂E
k

j

)
=

εk for all k where εk > 0 will depend on dynamical parameters such as time. In such a case we
must tread more carefully. In the previous paragraph, we did not need to calculate or estimate the
trace norm present because we showed that the operator in the trace norm was the zero operator.
If the perfect distinguishability condition is not satisfied, then we will need to compute/estimate
the sum over i of trace norms in (4.11). Although we may use Theorem 3.2.3 in order to bound
minPOVM

∑
i piTr{ρ̂E

k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
} by fidelitites of the set of density matrices {ρ̂E

k

i }i , i.e.

min
POVM

Tr
{

ρ̂E
k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†}
≤
∑
i

∑
j;j ̸=i

√
pipj

√
F (ρ̂i, ρ̂i) (4.12)

for all k, we do not yet have tools that aid us in the estimation of
∑
i pi

∥∥∥ρ̂E
k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†∥∥∥
1
.

It is clear by (4.12) that if the fidelities F
(
ρ̂E

k

i , ρ̂E
k

j

)
(i ̸= j) are arbitrarily small, then for all k

the local QSD error minPOVM Tr
{

ρ̂E
k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†}
will also become arbitrarily small. To

show that a similar argument holds for the right-hand side of the inequality (4.11) we will prove in
the following section a bound for (4.8) that will depend only on fidelities between the set of density
operators {ρ̂E

k

i }i, and vanish as the fidelities F
(
ρ̂E

k

i , ρ̂E
k

j

)
(i ̸= j) decay to zero for all k.

4.2 Bounding the Super Quantum State Discrimination Prob-
lem (SQSD)

In this section, we shall be simplifying our notational conventions since we shall not need the
superscripts on the density operators used in the previous section. Consider the mixed state

∑N
i=1 piρ̂i,

where
∑N
i=1 pi = 1 and the ρ̂i are pure states in a Hilbert space of dimension greater than N , i.e.

one-dimensional projections
∣∣ψi〉〈ψi∣∣, where

{∣∣ψi〉}Ni=1 are normalized vectors. Assuming that
∣∣ψi〉

are linearly independent, we may use the well-known Gram-Schmidt procedure to define the associated
orthonormal set.
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Theorem 4.2.1 (Gram-Schmidt Procedure)

Assume that the set
{∣∣ψ〉

i

}N
i=1, of vectors in some vector space V , is a linearly independent

set. Then the following construction yields an orthonormal set.

∣∣ϕ1
〉

=
∣∣ψ1
〉

(4.13)

∣∣ϕ2
〉

= 1
α2

(∣∣ψ2
〉

−
〈
ϕ1
∣∣ψ2
〉∣∣ϕ1

〉)
(4.14)

...∣∣ϕN〉 = 1
αN

(∣∣ψN〉−
N−1∑
k=1

〈
ϕk
∣∣ψN〉∣∣ϕk〉) (4.15)

Here αi :=
∥∥∥∣∣ψi〉−

∑i−1
k=1

〈
ϕk
∣∣ψi〉∣∣ϕk〉∥∥ =

√
1 −

∑i−1
k=1

∣∣〈ϕk∣∣ψi〉∣∣2 for i > 1 and α1 = 1 are the

respective normalization constants. We have Span
{{∣∣ψi〉}Ni=1

}
= Span

{{∣∣ϕi〉}Ni=1

}
.

The orthonormal set
{∣∣ϕi〉}Ni=1 may be used for the construction of a PVM , namely

{∣∣ϕi〉〈ϕi∣∣}N
i=1

∪
{
I −

N∑
i=1

∣∣ϕi〉〈ϕi∣∣} (4.16)

which we will use to estimate minPOVM
∑N
i=1 pi

∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥
1:

min
POVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ min
POVM

N∑
i=1

pi
∥∥ρ̂i − M̂iρ̂iM̂

†
i

∥∥
1 ≤ (4.17)

N∑
i=1

pi

∥∥∥ρ̂i −
∣∣ϕi〉〈ϕi∣∣ρ̂i∣∣ϕi〉〈ϕi∣∣∥∥∥1

(4.18)

for a judiciously chosen PVM
{∣∣ϕi〉〈ϕi∣∣}i.

Lemma 4.2.1 (Trace Distance Lemma)

Let ρ̂i and
∣∣ϕi〉 be defined as above; also let i > 1, then

∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi
∥∥

1 ≤ 2
i−1∑
k=1

|⟨ϕk|ψi⟩| (4.19)

Proof. ∥∥∥ρ̂i −
∣∣ϕi〉〈ϕi∣∣ρ̂i∣∣ϕi〉〈ϕi∣∣∥∥∥1

=
∥∥∥∣∣ψi〉〈ψi∣∣ρ̂i∣∣ψi〉〈ψi∣∣−

∣∣ϕi〉〈ϕi∣∣ρ̂i∣∣ϕi〉〈ϕi∣∣∥∥∥1
= (4.20)∥∥∥(∣∣ψi〉〈ψi∣∣−

∣∣ϕi〉〈ϕi∣∣)ρ̂i
∣∣ψi〉〈ψi∣∣+

∣∣ϕi〉〈ϕi∣∣ρ̂i(∣∣ψi〉〈ψi∣∣−
∣∣ϕi〉〈ϕi∣∣)∥∥∥

1
≤ (4.21)
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∥∥∥(∣∣ψi〉〈ψi∣∣−
∣∣ϕi〉〈ϕi∣∣)ρ̂i

∣∣ψi〉〈ψi∣∣∥∥∥
1

+
∣∣∣∣∣ϕi〉〈ϕi∣∣ρ̂i(∣∣ψi〉〈ψi∣∣−

∣∣ϕi〉〈ϕi∣∣)∥∥∥
1

≤ (4.22)∥∥∥∣∣ψi〉〈ψi∣∣−
∣∣ϕi〉〈ϕi∣∣∥∥∥

1

∥∥∥ρ̂i
∣∣ψi〉〈ψi∣∣∥∥∥

1
+
∥∥∥∣∣ϕi〉〈ϕi∣∣ρ̂i∥∥∥1

∥∥∥∣∣ψi〉〈ψi∣∣−
∣∣ϕi〉〈ϕi∣∣∥∥∥

1
= (4.23)

∥∥∥∣∣ψi〉〈ψi∣∣−
∣∣ϕi〉〈ϕi∣∣∥∥∥

1

(∥∥∥ρ̂i
∣∣ψi〉〈ψi∣∣∥∥∥

1
+
∥∥∥∣∣ϕi〉〈ϕi∣∣ρ̂i∥∥∥1

)
≤ (4.24)

∥∥∥∣∣ψi〉〈ψi∣∣−
∣∣ϕi〉〈ϕi∣∣∥∥∥

1

(∥∥ρ̂i
∥∥

1

∥∥∥∣∣ψi〉〈ψi∣∣∥∥∥
1

+
∥∥∥∣∣ϕi〉〈ϕi∣∣∥∥∥

1

∥∥ρ̂i
∥∥

1

)
≤ (4.25)

2
∥∥∥∣∣ψi〉〈ψi∣∣−

∣∣ϕi〉〈ϕi∣∣∥∥∥
1

= 2
√

1 − |
〈
ψi
∣∣ϕi〉|2 = (4.26)

2

√√√√1 −

∣∣∣∣∣ 1
αi

(
1 −

i−1∑
k=1

|
〈
ϕk
∣∣ψi〉|2)

∣∣∣∣∣
2

= 2

√√√√√√1 −

∣∣∣∣∣
(

1 −
∑i−1
k=1 |

〈
ϕk
∣∣ψi〉|2)√(

1 −
∑i−1
k=1 |

〈
ϕk
∣∣ψi〉|2)

∣∣∣∣∣
2

(4.27)

= 2

√√√√1 − 1 +
i−1∑
k=1

|
〈
ϕk
∣∣ψi〉|2 = 2

√√√√i−1∑
k=1

|
〈
ϕk
∣∣ψi〉|2 ≤ 2

i−1∑
k=1

|
〈
ϕk
∣∣ψi〉| (4.28)

The term
∑i−1
k=1

∣∣〈ϕk∣∣ψi〉| may be understood in terms of the related Gram Determinant. We
present this as a lemma.

Lemma 4.2.2 (Gramm Determinants)

∣∣ϕj〉 = 1√
Dj−1Dj

det



〈
ψ1
∣∣ψ1
〉 〈

ψ1
∣∣ψ2
〉

. . .
〈
ψ1
∣∣ψj〉〈

ψ2
∣∣ψ1
〉 〈

ψ2
∣∣ψ2
〉

. . .
〈
ψ2
∣∣ψj〉

...
... . . . ...〈

ψj−1
∣∣ψ1
〉 〈

ψj−1
∣∣ψ2
〉

. . .
〈
ψj−1

∣∣ψj〉∣∣ψ1
〉 ∣∣ψ2

〉
. . .

∣∣ψj〉


(4.29)

where

Dj := det


⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψj⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψj⟩

...
... . . . ...

⟨ψj |ψ1⟩ ⟨ψj |ψ2⟩ . . . ⟨ψj |ψj⟩

 (4.30)

where D0 := 1.

In determinant form,
〈
ψi
∣∣ϕk〉 may now be written as follows.

96



〈
ψi
∣∣ϕk〉 = 1√

Dk−1Dk

det



〈
ψ1
∣∣ψ1
〉 〈

ψ1
∣∣ψ2
〉

. . .
〈
ψ1
∣∣ψk〉〈

ψ2
∣∣ψ1
〉 〈

ψ2
∣∣ψ2
〉

. . .
〈
ψ2
∣∣ψk〉

...
... . . . ...〈

ψk−1
∣∣ψ1
〉 〈

ψk−1
∣∣ψ2
〉

. . .
〈
ψk−1

∣∣ψk〉〈
ψi
∣∣ψ1
〉 〈

ψi
∣∣ψ2
〉

. . .
〈
ψi
∣∣ψk〉


(4.31)

The power of viewing the states
∣∣ϕi〉 in their determinant form is that now we need only compute inner

products between elements of the set
{∣∣ψi〉}Ni=1 in order to estimate the solution of the PVM (4.16) via

an approximate solution to (4.8) problem with a particular PVM, i.e. minPVM
∑N
i=1 pi

∥∥ρ̂i−P̂iρ̂iP̂i

∥∥
1.

Recall that the states
{∣∣ψi〉}Ni=1 are normalized and let us consider the case where

〈
ψi
∣∣ψj〉 = εij for

all i ̸= j ∈ {1, ..., N}, where εij are complex numbers satisfying |εij | ≤ δ for all i ̸= j ∈ {1, .., N},
where δ is small. Since, under this assumption, all entries of the last column of the matrix (4.31)
are small, this would also imply that

∥∥∥ρ̂i−|ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi
∥∥∥

1
is small for all i, thanks to Lemma 4.2.1.

The above estimates imply the following theorem.

Theorem 4.2.2 (Bound for the Super Quantum State Discrimination Optimization
Problem)

Consider a mixed state of the form
∑N
i=1 piρ̂i,

∑N
i=1 pi = 1, where ρ̂i :=

∣∣ψi〉〈ψi∣∣ are pure
states acting on a Hilbert space of dimension greater than N . Furthermore, assume that the
states {

∣∣ψi〉}i are linearly independent. Then

min
POVM

N∑
i=1

pi

∥∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥∥
1

≤
N∑
i=2

pi

i−1∑
k=1

∣∣∣ Mk,i

Dk−1Dk

∣∣∣∣ (4.32)

where

Mk,i := 2det



⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

...
... . . . ...

⟨ψk−1|ψ1⟩ ⟨ψk−1|ψ2⟩ . . . ⟨ψk−1|ψk⟩
⟨ψi|ψ1⟩ ⟨ψi|ψ2⟩ . . . ⟨ψi|ψk⟩


(4.33)

Dk := det


⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

...
... . . . ...

⟨ψk|ψ1⟩ ⟨ψk|ψ2⟩ . . . ⟨ψk|ψk⟩

 (4.34)

Proof. The proof follows directly from Lemma 4.2.2 and Lemma 4.2.1, and the fact that for i = 1 the
corresponding projector is simply

∣∣ψi〉〈ψi∣∣ making the i = 1 term zero.
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It is with the bound provided by Theorem 4.2.2 that we may estimate the right-hand side of
(4.11). Notice that the magnitudes of the elements of the determinants found in (4.32) and (4.34) are
all bounded by the square root of the respective fidelities. i.e noting that [9]

〈
ψi
∣∣ψj〉 ≤

∣∣〈ψi∣∣ψj〉∣∣ =
√
F
(∣∣ψi〉〈ψi∣∣, ∣∣ψj〉〈ψj∣∣) (4.35)

With the latter relationship, it is clear that the bound of Theorem 4.2.2 will consist purely of fidelities
as was alluded to in the previous section.

4.3 Dynamical Monitoring for Discrete Variables

We have been studying properties of SBS states as introduced in Definition 4.1.2. In the present
section we will focus on the convergence of a time-dependent density operator ρ̂t to an SBS state
under quantum-mechanical time evolution. If we knew a priori that a certain type of multipartite
quantum-mechanical system behaves objectively per Definitions 4.1.1 and 4.1.2, then the states of this
system should converge to an SBS state as t → ∞. Time evolution may in general be described by
an arbitrary time-dependent quantum map. We will focus on the quantum maps obtained by partial
trace from unitary evolution corresponding to a Hamiltonian specified below.

4.3.1 Quantum-Measurement Limit

The principal models studied in SBS literature [38][39][40] are of the quantum-measurement limit
type, meaning SBS that arise from dynamics generated by Hamiltonians in which the interaction term
between the system S and the environment E dominates, i.e. Ĥtot = Ĥint + ĤE + ĤS ≈ Ĥint (here
tot means total and int means interaction terms). Such an approximation is valid when the system
and the environments evolve with respect to a time scale that is much larger than that of the time
scale corresponding to that of the interactive dynamics; these type of dynamics are central to the
theory of quantum decoherence [31] . In this work, we will furthermore narrow our focus to interaction
Hamiltonians of the von Neaumann type [18]

Ĥint = X̂ ⊗
N∑
k=1

gkB̂k (4.36)

The corresponding time evolution operator is hence

Ût = e−itX̂⊗
∑N

k=1
gkB̂k . (4.37)

The theory of SBS for discrete variables focuses on the case where the system S is described by
a finite-dimensional Hilbert space [38][39][40]. In this case, the self-adjoint operator X̂ has purely
discrete spectrum. Let {

∣∣i〉}dS
i=1 be the set of eigenvectors of X̂ with xi being the corresponding

eigenvalues. B̂k is assumed to be an arbitrary self-adjoint operator. We shall see that the spectral
properties of the operator B̂ will determine whether or not the multipartite states converge to an SBS
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state.

4.3.2 Partial Tracing

We consider a quantum system interacting with N macroscopic environments. We assume that the
joint initial state has the product form:

ρ̂ = ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0 (4.38)

In the state (4.38) we write the subscript 0 in Ek0 in order to emphasize that this is the initial state
of the kth environment Ek; similarly we use the subscript in S0 to highlight the initial state of the
system. We evolve our total initial state using the evolution operator (4.37).

ρ̂t =
(
e−itX̂⊗

∑N

k=1
gkB̂k

)
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

(
eitX̂⊗

∑N

k=1
gkB̂k

)
. (4.39)

To study the state of the subsystem formed by the system S and the first NE environments, we take
the partial trace of the time-evolved density operator over the remaining ME := N−NE environments.
The result is,

dS∑
i,j=1

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj
(4.40)

where, again, {
∣∣i〉}ds

i=1 are the eigenvectors of X̂, with corresponding eigenvalues {xi}dS
i=1 and we have

use the following notation

ρ̂E
k
t

x,y := e−itxgkB̂k ρ̂E
k
0 eitygkB̂k (k = 1, 2, ..., NE) (4.41)

ρ̂E
k
t

x := e−itxgkB̂k ρ̂E
k
0 eitxgkB̂k (k = 1, 2, ..., NE). (4.42)

σi,j := ⟨i|ρ̂S0 |j⟩ (4.43)

γki,j(t) := Tr
{

ρ̂E
k
t

xi,xj

}
(4.44)

Γ(i, j, , t) :=
N∏

n=NE+1
γni,j(t) (4.45)

We may also write (4.40) as

Λt
(

ρ̂S0 ⊗
NE⊗
k=1

ρ̂E
k
0
)

:=
dS∑
i,j=1

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj
(4.46)

where Λt is a quantum channel (see [9] for a discussion on quantum channels) defined as follows.

Λt
(
ρ̂
)

:= Ut ◦ Et
(
ρ̂
)

(4.47)
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where
Ut

(
Â
)

:= e−itX̂⊗
∑NE

k=1
gkB̂k

(
Â
)
eitX̂⊗

∑NE

k=1
gkB̂k (4.48)

acts non-trivially in S
(
HS ⊗

⊗NE

k=1 Hk

)
and Et acts non-trivially only in S

(
HS) as follows.

Et(Ĉ) :=
dS∑
i,j=1

⟨i|Ĉ|j⟩Γ(i, j, t)|i⟩⟨j| (4.49)

In words, the trace-preserving quantum map Λt is a composition of two trace-preserving quantum
maps Ut and Et: a unitary map acting on S and the environmental degrees of freedom that were not
traced out and a non-unitary map acting locally in S.

4.4 Monitoring the Process of System Information Broadcast-
ing

In [40] the goal was to show that (4.40) converges to an associated SBS state as t goes to ∞. For a
given t ≥ 0, one can create an SBS state approximating (4.40) in the following way. We first restrict
the sum of (4.40) to the diagonal terms—the terms with i = j. We will label the resulting operator
as follows.

ρ̂dg,t =
dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k
t

xi
(4.50)

The next step is to choose for every t a PVM acting on the space S
(
HS ⊗

⊗NE

k=1 HEk

)
( Note that

for the case considered in [40], dim(HS) = dS < ∞ and dim(HEk ) = dEk < ∞ for all k). To
define such a PVM, the eigenbasis of the operator X̂ is used: the elements of the PVM are of the
form

∣∣i〉〈i∣∣⊗
⊗NE

k=1 P̂Ek
t

j where the
{∣∣i〉〈i∣∣}dS

i=1 and
{

P̂Ek
t

j

}dS

j=1 ∪
{
I −

∑dS

i=1 P̂Ek
t

i

}
resolve the identity

operators in B
(
HS

)
and B

(
HEk

)
respectively, so that, in particular,

{
P̂Ek

t
j

}dS

j=1 ∪
{
I −

∑dS

i=1 P̂Ek
t

i

}
is

a PVM in the kth environment’s Hilbert space. The latter PVMs are then used to approximate the
operator (4.40) by an SBS state:

ρ̂SBS,t := 1
N

dS∑
j=1

(∣∣j〉〈j∣∣⊗
NE⊗
k=1

P
Ek

t
j

)
ρ̂diag,t

(∣∣j〉〈j∣∣⊗
NE⊗
k=1

P̂Ek
t

j

)
= (4.51)

dS∑
i=1

σ̃i|i⟩⟨i| ⊗
NE⊗
k=1

(
P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

)
. (4.52)

Here N is a normalizing constant and σ̃i := σi

N . One can verify that the operator (4.52) is indeed
an SBS state as defined in Definition 4.1.2. If (4.40) converges to an operator of the form (4.52) as
t → ∞, we say that (4.40) is asymptotically SBS. Convergence is meant here in the sense of trace
distance. Namely, one would like to show that

min
PVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 → 0 as t → ∞ (4.53)
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where for each t the minimization is taken over all projector-valued-measures
{

P̂Ek
t

i }dS
i=1 ∪ {I −∑dS

i=1 P̂Ek
t

i }. Utilizing the fact that minPOVM
∥∥ρ̂t − ρ̂SBS,t

∥∥
1 ≤ minPVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 we may
conclude that (4.53) implies that minPOVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 → 0 as t → ∞ as well. An attempt is
made in [40] to prove (4.53) but the argument provided there is incomplete. In what follows we discuss
the bounds presented in [40], as well as propose and prove an alternative bound for the trace distance
in (4.53).

In [40], the following bound is conjectured for the trace distance in (4.53).

1
2 min
PVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 ≤ Γ(t) +
∑
i

∑
j;j ̸=i

√
σiσj

NE∑
k=1

F
(
ρ̂E

k
t

xi
, ρ̂E

k
t

xj

)
(4.54)

where now, Γ(t) :=
∑
i

∑
j;j ̸=i |σi,j |

∏N
k=NE+1 |γki,j(t)|, and again γki,j(t) = Tr

[
ρ̂E

k
t

xi,xj

]
, σi,j := ⟨i|ρ̂S0 |j⟩

. This result would allow to estimate the minimum on the LHS, using the asymptotic properties of Γ(t)
and the fidelity terms in (4.54). This bound would in turn provide a way to estimate 1

2 minPOVM
∥∥ρ̂t−

ρ̂SBS,t
∥∥

1. As (4.54) is currently not known to be true, we will not be using it. Instead, we will be
utilizing the bound constituting Theorem 4.2.2 proven in the previous section.

4.4.1 A New Bound for the Trace Distance of a Multipartite State and an
Approximating SBS State

In what follows we use an unnormalized version of (4.51): ρ̂PSBS,t := N ρ̂SBS,t. In practice it is
easier to bound

∥∥ρ̂t − ρ̂PSBS,t
∥∥

1 and then use Lemma 4.4.1, stated below, to bound
∥∥ρ̂t − ρ̂SBS,t

∥∥
1.

Lemma 4.4.1 (Trace Distance Lemma)

For density operators ρ̂ and σ̂
∥∥ρ̂ − ησ̂

∥∥
1 ≤ L implies

∥∥ρ̂ − σ̂
∥∥ ≤ 2L for constants L ≥ 0 and

η ∈ [0, 1]

Proof. Using reverse triangle inequality we see that

L ≥ ∥ρ̂ − ησ̂∥1 ≥
∣∣∥ρ̂∥1 − ∥ησ̂∥1

∣∣ = ∥ρ̂∥1 − ∥ησ̂∥1 = 1 − η (4.55)

furthermore
∥ρ̂ − σ̂∥1 = ∥ρ̂ − ησ̂ + ησ̂ − σ̂∥1 ≤ ∥ρ̂ − ησ̂∥1 + ∥ησ̂ − σ̂∥1 ≤ (4.56)

L+ (1 − η)∥σ̂∥1 = L+ (1 − η) ≤ L+ L = 2L (4.57)

We now prove a preliminary inequality.

∥∥ρ̂t − ρ̂PSBS,t
∥∥

1 = (4.58)
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∥∥∥∥ dS∑
i,j=1

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj
−

dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥
1

≤ (4.59)

∥∥∥ dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂
Ek

t
xi

−
dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

P̂Ek
t

i ρ̂
Ek

t
xi

P̂Ek
t

i

∥∥∥
1

+
∥∥∥∑

i

dS∑
j;j ̸=i

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂
Ek

t
xi,xj

∥∥∥
1

≤ (4.60)

dS∑
i=1

∥∥∥σi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂
Ek

t
xi

− σi|i⟩⟨i| ⊗
NE⊗
k=1

P̂Ek
t

i ρ̂
Ek

t
xi

P̂Ek
t

i

∥∥∥
1

+
∥∥∥∑

i

dS∑
j;j ̸=i

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂
Ek

t
xi,xj

∥∥∥
1

≤ (4.61)

dS∑
i=1

σi

∥∥∥|i⟩⟨i| ⊗
( NE⊗

k=1

ρ̂
Ek

t
xi

−
NE⊗
k=1

P̂Ek
t

i ρ̂
Ek

t
xi

P̂Ek
t

i

)∥∥∥
1

+
∑

i

dS∑
j;j ̸=i

∣∣σi,jΓ(i, j, t)
∣∣∥∥∥|i⟩⟨j| ⊗

NE⊗
k=1

ρ̂
Ek

t
xi,xj

∥∥∥
1

= (4.62)

dS∑
i=1

σi

∥∥∥∥ NE⊗
k=1

ρ̂E
k
t

xi
−

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥
1

+
∑
i

dS∑
j;j ̸=i

∣∣σi,jΓ(i, j, t)
∣∣ ≤ (4.63)

NE∑
k=1

dS∑
i=1

σi

∥∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

+
∑
i

dS∑
j;j ̸=i

∣∣σi,jΓ(i, j, t)
∣∣ (4.64)

where in the last step we have used Lemma 4.1. Now, using Lemma 4.4.1 we conclude that

1
2 min
PVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 ≤ min
PVM

( NE∑
k=1

dS∑
i=1

σi

∥∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

)
+ Γ(t) (4.65)

Γ(t) :=
∑
i

∑
j;j ̸=i |σi,j |

∏N
k=NE+1 |γki,j(t)|, γki,j(t) = Tr

[
ρ̂E

k
t

xi,xj

]
, and σi,j := ⟨i|ρ̂S0 |j⟩. In (4.65),

Γ(t) is the decoherence term which is independent of the choice of the PVM minimized over. The
decoherence term is simple to study provided that we are able to compute the traces defining the terms
γki,j(t). The first term in (4.65) involves a minimization over all PVM for each value of t. Rather than
attempting to solve the minimization problem exactly, we shall be employing Theorem 4.2.2 to bound
(4.65).

In order to do this, you must assume that the initial states ρ̂E
k
0 are pure; we will consider the case

where these are not pure in Section 4.7. The purity of ρ̂E
k
0 implies that the operators ρ̂

Ek
t

i ( using
the notation defined in (4.42))are pure as well for all i since the evolution (4.42) is unitary. We will
henceforth write ρ̂E

k
0 as a projector. ∣∣ψki,t〉〈ψki,t∣∣ = ρ̂

Ek
t

i (4.66)

We now use Theorem 4.2.2 to estimate the first summand of (4.65), therefore obtaining the following
theorem.
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Theorem 4.4.1 (Estimating Proximity to SBS)

Using the definitions found in this section so far,

1
2 min
POVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 ≤ 1
2

NE∑
k=1

dS∑
i=2

σi

i−1∑
s=1

∣∣∣∣ Mk
s,i

Dk
s−1,tD

k
s,t

∣∣∣∣+ Γ(t) (4.67)

where

Mk
s,i := det



〈
ψk1,t

∣∣ψk1,t〉 〈
ψk1,t

∣∣ψk2,t〉 . . .
〈
ψk1,t

∣∣ψks,t〉〈
ψk2,t

∣∣ψk1,t〉 〈
ψk2,t

∣∣ψk2,t〉 . . .
〈
ψk2,t

∣∣ψks,t〉
...

... . . . ...〈
ψks−1,t

∣∣ψk1,t〉 〈
ψks−1,t

∣∣ψk2,t〉 . . .
〈
ψks−1,t

∣∣ψks,t〉〈
ψki,t
∣∣ψk1,t〉 〈

ψki,t
∣∣ψk2,t〉 . . .

〈
ψki,t
∣∣ψks,t〉


(4.68)

Dk
s,t := det


〈
ψk1,t

∣∣ψk1,t〉 〈
ψk1,t

∣∣ψk2,t〉 . . .
〈
ψk1,t

∣∣ψks,t〉〈
ψk2,t

∣∣ψk1,t〉 〈
ψk2,t

∣∣ψk2,t〉 . . .
〈
ψk2,t

∣∣ψks,t〉
...

... . . . ...〈
ψkj,t
∣∣ψk1,t〉 〈

ψkj,t
∣∣ψk2,t〉 . . .

〈
ψks,t

∣∣ψks,t〉

 (4.69)

Given that computing determinants is a difficult task, one might wonder if there is a way to avoid
doing so via further bounding the term (4.67) with another term that does not involve determinants.
It turns out that such an approach is possible and if the entries

〈
ψks,t

∣∣ψkl,t〉 are small enough, the
process is even easier to handle. We will develop such an approach in Section 4.5 of this chapter.
The bound (4.67) may be used to dynamically monitor the convergence of some multipartite quantum
state undergoing non-unitary evolution to an SBS state. Regardless of whether (4.54) is viable or not;
the bound (4.67) gives us a way to monitor convergence to SBS in a way that is independent of the
optimization problem over all PVMS and/or POVMS.

It is with Theorem 4.4.1 that we hope to mitigate the gap in [40]. Although Corollary 1 of [40] is
not substantiated by a correct proof at the moment, we present Theorem 4.4.1 as a viable alternative
to Corollary 1 of [40]. If fate should have it that Corollary 1 is shown to be fundamentally untrue,
then Theorem 4.4.1 would be the only tool for us to choose from ( i.e. to the extent of the author’s
knowledge).

4.5 Further Bounds for Theorem 4.2.2

As mentioned in the previous section, taking determinants is in general computationally costly. If
one could find an estimate that allowed us to avoid computing the determinants of Theorem 4.4.1
this would be of great utility. We are typically interested in asymptotic behavior; in particular, we
are studying cases where the minimization terms of Theorem 4.4.1 are expected to become small with
respect to the relevant time scale of the dynamics in question (usually the decoherence time-scale is
used). So long as we find a bound that shows the same asymptotic dynamics as the upper bound of
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Theorem 4.4.1, such a bound may also allow us to estimate the smallness of the minimization terms
in (Theorem 4.4.1) as t gets large with respect to the relevant time scale. To begin our search for such
an estimate we introduce three results that we shall be using.

Theorem 4.5.1 (Hadamard’s inequality for determinants [16])

Let Â be some arbitrary N ×N matrix with entries Ai,j . Then

det
(
Â
)

≤
N∏
j=1

( N∑
i=1

|Aij |2
) 1

2

.

Theorem 4.5.2

[16] Let I + B̂ be an N ×N matrix with entries δij +Bij where Bi,i = 0 for all i. Then

det(I + B̂) =
N∏
j=1

(
1 + λj

(
B̂
))

Theorem 4.5.3 (Gerschgorin Theorem [54])

Let Â be an arbitrary N ×N matrix with matrix elements Ai,j . Now, define

Di :=
{
z ∈ C : |z −Aii| ≤

∑
j;j ̸=i

|Aij |
}
.

Then, all of the eigenvalues of the operator Â are found in the set GN :=
⋃N
i=1 Di. The sets

Di are known as Gerschgorin discs.

We now use these theorems to prove the following. Using the notational conventions of the previous
section,
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Theorem 4.5.4

min
PVM

dS∑
i=1

σi

∥∥∥∥ρ̂E
k
t

xi
− PEk

t
i ρ̂E

k
t

xi
PEk

t
i

∥∥∥∥
1

≤ (4.70)

dS

(
1 + dSMdS

(t)
)dS−1 dS∑

i ̸=j

σi|⟨ψki,t|ψkj,t⟩|

minx∈GdS

∣∣1 − |x|
∣∣i−1 (4.71)

where
Gs :=

s⋃
i=1

Ds
i (4.72)

Ds
i :=

{
x ∈ R : |x| ≤

∑
j;j ̸=i

|Bsij,t|
}
i ∈ {1, ..., k} (4.73)

MdS
(t) := max

i̸=j;{1,...,dS}
|⟨ψki,t|ψkj,t⟩| (4.74)

and

B̂s
t :=


0 ⟨ψk1,t|ψk2,t⟩ . . . ⟨ψk1,t|ψks,t⟩

⟨ψk2,t|ψk1,t⟩ 0 . . . ⟨ψk2,t|ψks,t⟩
...

... . . . ...
⟨ψkj,t|ψk1,t⟩ ⟨ψkj,t|ψk2,t⟩ . . . 0

 (4.75)

Proof. Assume that s > 2. Then, using Theorem 4.5.1

Â :=
∣∣∣∣∣det



⟨ψk1,t|ψk1,t⟩ ⟨ψk1,t|ψk2,t⟩ . . . ⟨ψk1,t|ψks,t⟩
⟨ψk2,t|ψk1,t⟩ ⟨ψk2,t|ψk2,t⟩ . . . ⟨ψk2,t|ψks,t⟩

...
... . . . ...

⟨ψks−1,t|ψk1,t⟩ ⟨ψks−1,t|ψk2,t⟩ . . . ⟨ψks−1,t|ψks,t⟩
⟨ψki,t|ψk1,t⟩ ⟨ψki,t|ψk2,t⟩ . . . ⟨ψki,t|ψks,t⟩


∣∣∣∣∣ ≤ (4.76)

s∏
n=1

( s∑
m=1

|An,m|2
) 1

2

(4.77)

Where
Anm = ⟨ψkn,t|ψkm,t⟩ for n ∈ {1, ..., k − 1} m ∈ {1, ..., k} (4.78)

and
Anm = ⟨ψki,t|ψkm,t⟩ for n = k m ∈ {1, ..., k}. (4.79)

Therefore,

s∏
n=1

( s∑
m=1

|Anm|2
) 1

2

=
s−1∏
n=1

( s∑
m=1

|⟨ψkn,t|ψkm,t⟩|2
) 1

2
( s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

≤ (4.80)
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(
max

n∈{1,...,s−1}

s∑
m=1

|⟨ψkn,t|ψkm,t⟩|2
) s−1

2
( s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

(4.81)

(
1 + max

n∈{1,...,s−1}

s∑
m=1;m̸=n

|⟨ψkn,t|ψkm,t⟩|2
) s−1

2
( s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

≤ (4.82)

(
1 + max

n∈{1,...,dS−1}

dS∑
m=1;m ̸=n

|⟨ψkn,t|ψkm,t⟩|2
) dS −1

2
( s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

≤ (4.83)

(
1 + dS max

n ̸=m;{1,...,dS}
|⟨ψkn,t|ψkm,t⟩|

)dS−1( s∑
m=1

|⟨ψki,t|ψkm,t⟩|
)

(4.84)

Now, let us shift our attention to the terms Dk
s,t in Theorem 4.4.1.

Dk
s,t := det


⟨ψk1,t|ψk1,t⟩ ⟨ψk1,t|ψk2,t⟩ . . . ⟨ψk1,t|ψks,t⟩
⟨ψk2,t|ψk1,t⟩ ⟨ψk2,t|ψk2,t⟩ . . . ⟨ψk2,t|ψks,t⟩

...
... . . . ...

⟨ψkj,t|ψk1,t⟩ ⟨ψkj,t|ψk2,t⟩ . . . ⟨ψks,t|ψks,t⟩

 (4.85)

Using Theorem 4.5.2 we have that

|Dk
s,t| =

∣∣∣∣ s∏
j=1

(
1 + λj

(
B̂s
t

))∣∣∣∣ (4.86)

where again

B̂s
t :=


0 ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψs,t⟩

⟨ψk2,t|ψk1,t⟩ 0 . . . ⟨ψk2,t|ψks,t⟩
...

... . . . ...
⟨ψkj,t|ψk1,t⟩ ⟨ψkj,t|ψk2,t⟩ . . . 0

 (4.87)

Now, using Theorem 4.5.3 we know that the eigenvalues of B̂st lie within the Gerschgorin discs

Ds
i :=

{
x ∈ C : |x| ≤

∑
j;j ̸=i

|Bsij,t|
}
i ∈ {1, ..., k} (4.88)

where we have made use of the fact that Bsii,0 = 0 for all i. The superscript of Ds
i is used to highlight

its pertinence to the determinant Dk
s,t. Now,

|Dk
s,t| =

∣∣∣∣ s∏
j=1

(
1 + λj

(
B̂s
t

))∣∣∣∣ =
s∏
j=1

∣∣1 + λj
(
B̂s
t

)∣∣ ≥ (4.89)

≥
s∏
j=1

min
x∈Gs

∣∣1 + x
∣∣ = min

x∈Gs

∣∣1 + x
∣∣s. (4.90)

Here we remind the reader that Gs :=
⋃s
i=1 Ds

i . Minimizing over a larger set yields a smaller minimum,
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hence,
min
x∈Gs

∣∣1 + x
∣∣s ≥ min

x∈GdS

∣∣1 + x
∣∣s ≥ min

x∈GdS

∣∣1 − |x|
∣∣k. (4.91)

Using (4.84) and (4.91), we may now further bound the determinant-including terms in result (4.67)
to obtain

min
PVM

dS∑
i=1

σi

∥∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

≤ (4.92)

dS∑
i=2

σi

i−1∑
s=1

(
1 + dSMds

(t)
)dS−1(∑s

m=1 |
〈
ψki,t
∣∣ψkm,t〉|)

minx∈GdS

∣∣1 − |x|
∣∣s = (4.93)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
s=1

s∑
m=1

|
〈
ψki,t
∣∣ψkm,t〉|

minx∈GdS

∣∣1 − |x|
∣∣s ≤ (4.94)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
s=1

i−1∑
m=1

|
〈
ψki,t
∣∣ψkm,t〉|

minx∈GdS

∣∣1 − |x|
∣∣i−1 ≤ (4.95)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi(i− 1)

i−1∑
m=1

|
〈
ψki,t
∣∣ψkm,t〉|

minx∈GdS

∣∣1 − |x|
∣∣i−1 ≤ (4.96)

dS

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
m=1

|
〈
ψki,t
∣∣ψkm,t〉|

minx∈GdS

∣∣1 − |x|
∣∣i−1 ≤ (4.97)

dS

(
1 + dSMdS

(t)
)dS−1 dS∑

i

dS∑
j;j ̸=i

σi|
〈
ψki,t
∣∣ψkj,t〉|

minx∈GdS

∣∣1 − |x|
∣∣i−1 (4.98)

We follow up Theorem 4.5.4 with the following corollary.

Corollary 4.5.1 (Bound for small dSMdS
(t))

Assume that dSMdS
(t) < 1, then

min
PVM

dS∑
i=1

σi

∥∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

≤ (4.99)

dS

(
1 + dSMdS

(t)
)dS−1

(
1 − dSMdS

(t)
)dS−1

dS∑
i=1

dS∑
j;j ̸=i

σi|
〈
ψki,t
∣∣ψkj,t〉| (4.100)

Corollary 4.5.1 and Theorem 4.5.4 give us a non-computationally heavy way of estimating the
bound of Theorem 4.4.1.
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4.6 Case Where Dk
s,t Are Determinants of Circulant Matrices

Before moving on to the more general case where the density operators ρ̂
Ek

t
i are taken to be mixtures,

we will consider a special case where the bound of Theorem 4.4.1 may take a simpler form. i.e. let
us return to the determinant term in (4.69), this time however we will assume that ⟨ψki,t|ψkj,t⟩ is
characterized by a function of t|i− j|. i.e. fk(t|i− j|) := ⟨ψki,t|ψkj,t⟩. Using this, we rewrite Dk

s,t from
(4.69) as follows.

Dk
s,t := det


fk(0) fk(t) . . . fk(t(s− 1))
fk(t) fk(0) . . . fk(t(s− 2))

...
... . . . ...

f(t(j − 1)) f(t(j − 2)) . . . f(0)

 (4.101)

(4.101) is a determinant of a circulant matrix and such determinants may be calculated exactly with
ease [60]. Namely,

Dk
s,t =

s−1∏
m=0

s−1∑
n=0

fk(tn)emn2πi
s . (4.102)

4.7 Mixed Environmental States

Recall that we named the sums over i in (4.65) the SQSD problem for the mixture
∑
i σiρ̂

Ek
t

xi
.

pE

{
pi, ρ̂E

k
t

xi
, P̂Ek

t
i

}
=

dS∑
i=1

σiTr

{
ρ̂E

1
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

}
≤

dS∑
i=1

σi

∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

(4.103)

where we have used the fact that
∣∣Tr{Â

}∣∣ ≤
∥∥Â
∥∥

1.
The theory we have developed so far considers only the case where ρ̂E

k
t

xi
are pure states for all i and

k. In this section, we will provide the analog to Theorem 4.2.2 for the case where the environmental
degrees of freedom are finite mixtures of pure states. Using a simpler indexing scheme, consider a
mixed state of the form

∑N
i=1 piρ̂i, where

∑N
i=1 pi = 1 and the ρ̂i are all countably-mixed states; i.e.

ρ̂i =
∑Mi

k=1 ηikρ̂ik where all of the ρ̂ik are pure states and
∑Mi

k=1 ηik = 1. Let us now consider the
QSD problem

min
POVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
. (4.104)

We obtain an upper bound on (4.104) if we minimize over all PVM instead of all POVM.

min
POVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ min
PVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ (4.105)

min
PVM

N∑
i=1

pi

∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥
1

(4.106)
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The left-hand side of (4.105) can be bounded from below using Theorem 3.2.2 . Namely,

1
2

N∑
i=1

N∑
j;j ̸=i

pipjF (ρ̂i, ρ̂j) ≤ min
PVM

N∑
i=1

pi

∥∥∥ρ̂i − P̂iρ̂i=1P̂i

∥∥∥
1

(4.107)

Expanding the ρ̂i we see that

√
F (ρ̂i, ρ̂j) =

√√√√F
( Mi∑
k=1

ηikρ̂ik,

Mj∑
k=1

ηjkρ̂jk

)
≥

min{Mi,Mj}∑
k=1

√
ηikηjk

√
F
(

ρ̂ik, ρ̂jk

)
(4.108)

where we have used Theorem 9.7 of [9] in (4.108). (4.107) now implies that

1
2

N∑
i=1

N∑
j;j ̸=i

pipj

(min{Mi,Mj}∑
k=1

√
ηikηjk

√
F
(

ρ̂ik, ρ̂jk

))2

≤ min
PVM

N∑
i=1

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

(4.109)

This inequality shows that a necessary condition for fully solving the optimization problem (4.109)
is that F

(
ρ̂ik, ρ̂jk

)
= 0 for all i, j, k where i ̸= j. Otherwise, we run into the possibility that this

minimum is bounded away from zero. For the case where the ρ̂i are not mixed states the respective
relationship is F

(
ρ̂i, ρ̂j

)
= 0 for i ̸= j, which is what we expect for the states studied in the previous

section and those to be studied. For the case where the ρ̂i are finite mixtures of pure states, one
will be required to analyze the fidelities between elements of any two different mixtures, say ρ̂i and
ρ̂j , in order to determine the discriminability of the mixture

∑N
i=1 ρ̂i. We will analyze these types of

mixtures in the following.

We will be estimating the right-hand side of (4.109). Our approach shall be an adaptation of the
methods employed in the proof of Theorem 4.2.2 and Lemma 4.2.1. Constraining to the case where
P̂i are projectors will yield a bound that will be useful for the cases where F

(
ρ̂ik, ρ̂jk

)
= 0 for all k

when i ̸= j and F
(
ρ̂ik, ρ̂il

)
= 0 for all i when l ̸= k hold exactly and/or approximately.

We begin by noting that

min
PVM

N∑
i=1

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

≤ min
PVM

N∑
i=1

Mi∑
k=1

piηik

∥∥∥ρ̂ik − P̂iρ̂ikP̂i

∥∥∥
1

(4.110)

This looks very similar to the PVM QSD problem for pure states tackled in the previous two sections
(note that piηik is a probability distribution, where leqi ≤ N and 1 ≤ k ≤ Mi) except that now each
element of the PVM

{
P̂i

}
i

multiplies all elements ρ̂ik of the ith mixture. Following the methods from
the previous section, one might suggest implementing the gram-schmidt procedure once more in order
to obtain an orthonormal set of vectors

∣∣ϕi〉, one for each i. However, in this case, the operators ρ̂i

are mixed and therefore do not have a representation as a vector in the corresponding Hilbert space;
being able to view the mixture

∑
i piρ̂i as a single index ensemble of pure states was one of the key

assumptions that lead to Theorem 4.2.2.
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We now assume that the P̂i have the following structure.

P̂i =
Mi∑
k=1

P̂ik (4.111)

In order to guarantee that the
∑Mi

k=1 P̂ik is a projector, we will assume that the ranges P̂ik are
orthogonal to each other, k varying from 1 to Mi.

Since all of the ρ̂ik are pure states, we may apply the Gram-Schmidt process in order to construct
a PVM

{
P̂ik

}
ik

. With the inclusion of the completion element I −
∑
i

∑
k P̂ik, operators P̂ik form a

PVM that resolves the identity. There are
∑N
i=1 Mi states ρ̂ik, let us now arrange them in a sequence.

V⃗ :=
(

ρ̂11 . . . ρ̂1M1 ρ̂21 . . . ρ̂2M2 . . . ρ̂N1 . . . . . . ρ̂NMN

)
. (4.112)

Let us name the sth component of this sequence Vs :=
∣∣ξs〉〈ξs∣∣. Since the cardinality of the sequence

(4.112) is the same as the cardinality of the set {ρ̂ik}ik, (1 ≤ i ≤ N, 1 ≤ k ≤ Mi), there exists
a bijection M mapping every vector (i, k) (which we write in shorthand as ik) to a unique s and
viceversa.

Assuming that the
∣∣ξs〉〈ξs∣∣ form a linearly independent set we now apply the Gram-Schmidt

process to obtain the family of orthonormal states

∣∣ϕ1
〉

:=
∣∣ξ1
〉

(4.113)

∣∣ϕs〉 := 1
αs

{∣∣ξs〉−
s−1∑
k=1

〈
ϕk
∣∣ξs〉∣∣ϕk〉}, s ∈ {1, 2, ...,

N∑
i=1

Mi} (4.114)

and as before αi :=
∥∥∣∣ξi〉−

∑i−1
k=1

〈
ϕk
∣∣ξi〉∣∣ϕk〉∥∥ =

√
1 −

∑i−1
k=1 |

〈
ϕk
∣∣ξi〉|2 for i > 1 and α1 = 1 are the

respective normalization constants. An identity resolving PVM
{∣∣ϕs〉〈ϕs∣∣}

s

⋃{
I−
∑
s

∣∣ϕs〉〈ϕs∣∣} has
thus been constructed, defining ωs := piηik, where s = M

(
(i, k)

)
, we may now rewrite and bound

N∑
i=1

Mi∑
k=1

piηik

∥∥∥ρ̂ik − Piρ̂ikPi

∥∥∥
1

(4.115)

as follows.∑
s

ωs

∥∥∥∣∣ξs

〉〈
ξs

∣∣−
( ∑

l ∋
proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
∣∣ϕl

〉〈
ϕl

∣∣)∣∣ξs

〉〈
ξs

∣∣( ∑
l ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
∣∣ϕl

〉〈
ϕl

∣∣)∥∥∥
1

= (4.116)

∑
s

ωs

∥∥∥∥∣∣ξs

〉〈
ξs

∣∣−∣∣ϕs

〉〈
ϕs

∣∣ξs

〉〈
ξs

∣∣ϕs

〉〈
ϕs

∣∣−( ∑
l ̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
∣∣ϕl

〉〈
ϕl

∣∣)∣∣ξs

〉〈
ξs

∣∣( ∑
l ̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
∣∣ϕl

〉〈
ϕl

∣∣)∥∥∥∥
1

≤

(4.117)
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∑
s

ωs

∥∥∥∣∣ξs

〉〈
ξs

∣∣−∣∣ϕs

〉〈
ϕs

∣∣ξs

〉〈
ξs

∣∣ϕs

〉〈
ϕs

∣∣∥∥∥
1
+
∑

s

ωs

∥∥∥∥( ∑
l ̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
∣∣ϕl

〉〈
ϕl

∣∣)∣∣ξs

〉〈
ξs

∣∣( ∑
l ̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
∣∣ϕl

〉〈
ϕl

∣∣)∥∥∥∥
1

≤

(4.118)

2
∑

s

ωs

s−1∑
k=1

|
〈
ϕk

∣∣ξs

〉
| +
∑

s

ωs

∑
l̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
( ∑

k ̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
∥∥∥∣∣ϕl

〉〈
ϕl

∣∣ξs

〉〈
ξs

∣∣ϕk

〉〈
ϕk

∣∣∥∥∥
1

)
= (4.119)

2
∑

s

ωs

s−1∑
k=1

|
〈
ϕk

∣∣ξs

〉
| +
∑

s

ωs

∑
l ̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
( ∑

k ̸=s ∋

proje1

(
M−1(l)

)
=

proje1

(
M−1(s)

)
|
〈
ϕl

∣∣ξs

〉〈
ξs

∣∣ϕk

〉
|
)

(4.120)

where we have used Lemma 4.2.1 in going from (4.118) to (4.119). Using Lemma 4.2.2 we may
explicitly write the terms |

〈
ϕl
∣∣ξs〉| as Gram-Schmidt determinants and use these to estimate the

efficacy of the PVM built from (4.113) and (4.114). (4.120) may be further bounded by the following
term.

(4.120) ≤ 3
∑
s

ωs
∑
l;l ̸=s

|
〈
ϕl
∣∣ξs〉| (4.121)

where the only restriction on the sums is that l ̸= s. As already mentioned, this may be better
estimated using Lemma 4.2.2. We state the result (4.120) as a theorem.
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Theorem 4.7.1

Consider a mixed state of the form
∑N
i=1 piρ̂i,

∑N
i=1 pi = 1, where ρ̂i are all countable mixtures

of pure states,i.e. ρ̂i =
∑Mi

k=1 ηik
∣∣ψik〉〈ψik∣∣ where

∑Mi

k=1 ηik = 1. Furthermore, assume that
the set

{∣∣ψik〉}ik is linearly independent. Then

min
PVM

N∑
i=1

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

≤ (4.122)

2
∑
s

ωs

s−1∑
k=1

|
〈
ϕk
∣∣ξs〉| +

∑
s

ωs
∑
l ̸=s ∋

proje1

(
M −1(l)

)
=

proje1

(
M −1(s)

)
( ∑

k ̸=s ∋
proje1

(
M −1(l)

)
=

proje1

(
M −1(s)

)
|
〈
ϕl
∣∣ξs〉〈ξs∣∣ϕk〉|) (4.123)

where ∣∣ξs〉 :=
∣∣ψ

M
(

(i,k)
)〉 (4.124)

M (defined in the discussion following (4.112)) (4.125)∣∣ϕ1
〉

:=
∣∣ξ1
〉

(4.126)

∣∣ϕs〉 := 1
αs

{∣∣ξs〉−
s−1∑
k=1

〈
ϕk
∣∣ξs〉∣∣ϕk〉}, s ∈ {1, 2, ..., S :=

N∑
i=1

Mi} (4.127)

and

αi :=
∥∥∣∣ξi〉−

i−1∑
k=1

〈
ϕk
∣∣ξi〉∣∣ϕk〉∥∥ =

√√√√1 −
i−1∑
k=1

|
〈
ϕk
∣∣ξi〉|2 (4.128)

for i > 1 and α1 = 1 are the respective normalization constants.

Proof. The proof may be found in the preceding discussion.

As a final remark, we point out that a more general mixture of non-pure states
∑
i piρ̂i may be

obtained by considering the case where ρi := Ei
(
ρ̂0
)

(ρ̂0 is a pure state); Ei being arbitrary quantum
maps for all i. In general the ρi := Ei

(
ρ̂0
)

will not be expressable as finite mixtures. If such a case is
encountered we may use (4.120) only if the ρi := Ei

(
ρ̂0
)

may be approximated by countable mixtures.
In Chapter 5 we will study a case where a mixture of the type

∑
i piEi

(
ρ̂0
)

is encountered. However,
for some of the cases to be studied in Chapter 5, the Ei will be approximately unitary maps and so
we use this to approximate

∑
i piEi

(
ρ̂0
)

with a countable mixture of pure states. More general cases
are still open to further investigation.

4.8 How General May the B̂k Be?

We conclude this subsection with the following Theorem. The question it sheds light on is the following:
"How general may B̂ whilst still inducing dynamics (4.46) which are convergent to and SBS state?"
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Theorem 4.8.1 (Sufficient conditions for the convergence to SBS for a broad
family of multipartite states)

Consider the setup spanning equations (4.38) through (4.46). If for all k, B̂k has a non-empty
Rajchman subspace HEk,rc ([58]), and ρ̂E

k

0 is a finite mixture of pure states in S(HEk,rc), then
ρ̂ converges asymptotically in t > 0 to an SBS state with respect to the trace norm topology.

Proof. Using Theorems 4.4.1 and 4.7.1,
∑NE

k=1
∑dS

i=1 σi

∥∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

may be estimated using

inner products of distinct
∣∣ψik⟩ ( see (4.34) and (4.33)). Furthermore, for all i ̸= j, Γ(i, j, t) (4.45) is

a product of inner products. The inner products featured in both diagonal terms

NE∑
k=1

dS∑
i=1

σi

∥∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

and the off-diagonal terms
∑
i

∑dS

j;j ̸=i
∣∣σi,jΓ(i, j, t)

∣∣ have the structure
〈
ψ
∣∣e−itαB̂k

∣∣ϕ〉 with
∣∣ψ〉 ∈

HEk,rc which implies the claim (using the fact that the Rajchman subspace is a reducing sub-
sapce).
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Chapter 5

SBS for Continuous Variables

In this Chapter, we will generalize the concept of SBS to the case where the operator X̂ is a position
operator acting in HS = L2(R). Whilst studying SBS theory in such a case, we shall be interested
in the decoherence of superpositions of the general eigenstates of X̂. In particular, let ρ̂S0 be state in
S
(
L2(R)), we will be keen on studying the behaviour of

〈
x′∣∣Et(ρ̂S)∣∣x〉 (5.1)

as t becomes large within a specified time frame of interest, where Et is a quantum map that pro-
duces decoherence effects [12]. Notice the continuous nature of the coherence terms (5.1), i.e. for
any x, x′ ∈ R (5.1) is a coherence term vs the analogous case studied in the previous chapter, i.e.
(4.49), where there was a countable amount of coherence terms. We henceforth will be referring to
the case where X̂ has purely continuous spectrum as the SBS theory for continuous variables (SBSCV).

Let us assume the quantum-measurement limit, hypothesis discussed in Subsection 1.6.3 with
dim

(
HS

)
= ∞ and dim

(
HEk

)
= ∞ for all k. i.e.

Ĥtot ≈ Ĥint (5.2)

We will also assume an interaction Hamiltonian of the von Neumann type. Hence,

Ĥint = X̂ ⊗
N∑
k=1

gkB̂k (5.3)

We already mentioned that X̂ will be taken to be the position operator for now. The B̂k will, in
general, be taken to be self-adjoint operator with a non-empty Rajchman Subspace (Theorem 3.5.1);
each acting in its respective Hilbert space, i.e. all of the B̂k act on different Hilbert spaces. An
example of the latter, and one which we will explore in-depth, is the case where all of the B̂k are
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position or momentum operators. The time evolution operator corresponding to (5.3) is the following.

Ût = e−itX̂⊗
∑N

k=1
gkB̂k . (5.4)

Considering a product state as our initial state, as we did in (4.38), acting on the appropriate product
Hilbert space, we apply the time evolution operator (5.4).

ρ̂t =
(
e−itX̂⊗

∑N

k=1
gkB̂k

)(
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

)(
eitX̂⊗

∑N

k=1
gkB̂k

)
. (5.5)

In order to study the state of the subsystem formed by the system S and the first NE environments,
we take the partial trace of the time-evolved density operator over the remaining ME := N − NE

environments. Using Lemma 1.6.1 and (5.5), the following state is the result of partially tracing ME

environments from (5.5).

UNE ,t

(
EME
t

(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂E
k
0

)
(5.6)

Where
Un,t

(
Â
)

:= e−itX̂⊗Ŝn
(
Â
)
eitX̂⊗Ŝn (5.7)

Ŝn :=
n∑
k=1

gkB̂k (5.8)

and
EME
t {σ̂} :=

∫ ∫
⟨x|σ̂|y⟩ΓME

(t, x, y)|x⟩⟨y|dxdy. (5.9)

where

ΓME
(t, x, y) :=

N∏
k=NE+1

Trk

{(
e−itxgkB̂k

)
ρ̂E

k
0
(
eitygkB̂k

)}
(5.10)

ME = N − NE , the number of traces being taken in equation (5.10). To simplify the notation, we
shall forgo all but two environments, i.e. N = 2, NE = ME = 1. Generalizing everything to a general
ME , NE and N is trivial. In such a case, after partial tracing over one of the environments we obtain
the following density operator.

ρ̂t := U1,t
(
E 1
t {ρ̂S0} ⊗ ρ̂E

1
0
)
. (5.11)

The map E 1
t is a decoherence quantum map and U1,t is a unitary map obtained from the Hamiltonian

(5.3) for the case N = 2. Again, all of the ensuing results may be easily generalized to a general NE .

The primary divergence from the techniques presented in the previous section will be the necessity
to partition the operator E 1

t {ρ̂S0}. For the case where X̂ is a position operator, the partitions of
interest are those of the following.

E 1
t {ρ̂S0

}
=
∑
i

∑
j

P̂∆i,t
E 1
t {ρ̂S0

}
P̂∆j,t

(5.12)
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where the operators P̂∆i,t
are projector operators defined as follows. P̂∆i,t

X̂ = χ∆i,t

(
X̂
)

(χ∆i,t

(
x)

are indicator functions and the ∆i,t are subsets of the real line). This is akin to what was done in
the previous section to obtain (4.40), where in lieu of the projectors P̂∆i,t

, projectors onto the eigen-
subspspaces corresponding to the eigenvectors

{∣∣i〉}dS

i=1 are used (see discussion following (4.40)).
Although using projectors onto the generalized eigensubspaces of X̂ (now a position operator) is the
most natural means of generalizing (4.40), there are limitations. The projectors P̂∆i,t

will be in gen-
eral time-dependent, and the size of the ∆i,t will be restricted by quantum-metrological and other
physical limitations [15]. We will not explore the quantum-metrological aspects of SBSCV in this
work; we simply highlight the fact that the size of the magnitudes of the ∆i,t may be bounded from
below and from above by parameters depending on quantum-metrological physical limitations. A
physical interpretation of the limiting smallness of the subspaces ∆i,t, may be deduced within the
context of von Neumann’s theory of quantum measurement (2.2.3). The set of P̂∆i,t

is a PVM and
therefore characterizes a von Neumann measurement on the system S. With the latter in mind, the
sizes of the ∆i,t may be interpreted as resolution limits. Indeed, resolving the position of an arbitrarily
small particle would require arbitrarily larger amounts of energy as the size of the particle becomes
smaller. Due to the technological limitations of monitoring apparatuses, there will always be a limit
to the smallness of the resolution ∆i,t. When introducing the approximate SBS state for continuous
variables, a specific PVM acting on the system S will be assumed for every t prior to estimating the
respective optimization problem that ensues (see 5.19). It is there where the partition (5.12) will play
a key role.

Assuming that we have an appropriate partition (5.12), we may now mirror our work from the
previous Chapter in order to define an appropriate SBS for the CV case. We then develop tools to
study the convergence of (5.12) to such an SBS state in t. First, we present a definition that generalizes
Definition 4.1.2 to a definition that supports the CV setting. Namely,
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Definition 5.0.1 (SBS, a more general definition)

Let HS ⊗
⊗NE

k=1 HEk be some tensor product Hilbert space. HS will correspond to the system
while HE1 ,HE2 , ...,HENE will all correspond to environmental degrees of freedom. A SBS
state acting in S

(
HS ⊗

⊗NE

k=1 HEk

)
is any density operator of the form

ρ̂SBS :=
∑
i

(
P̂Si

⊗
NE⊗
k=1

IEk

)
ρ̂

(
P̂Si

⊗
NE⊗
k=1

IEk

)
(5.13)

satisfying the following properties.

Property 1)

F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 ∀ i ̸= j (5.14)

where
{

P̂Si

}
i

is a PVM acting in HS and

ρ̂E
k

i := TS

{
TE

k
′ ̸=k

{(
P̂Si

⊗
NE⊗
k=1

IEk

)
ρ̂

(
P̂Si

⊗
NE⊗
k=1

IEk

)}}
(5.15)

(TrEk′ ̸=k means that we trace out over all environments with the exception of the kth
environment).

Property 2) TrS
{

ρ̂
}

is a separable state. i.e. it is of the form

TrS
{

ρ̂
}

=
∑
i

pi

NE⊗
k=1

ρ̂E
k

i

(∑
i

pi = 1
)

(5.16)

or

TrS
{

ρ̂
}

=
∫
p(x)

NE⊗
k=1

ρ̂E
k

x dx
(∫

p(x)dx = 1
)

(5.17)

Indeed, Definition 4.1.2 satisfies the properties of Definition 5.0.1. Furthermore, for every t > 0
one may deduce an approximate SBS state, in the sense of Definition 5.0.1 from ρ̂t (from 5.11) as
follows. Let the PVM

{
P̂∆i,t

}
i

and
{

P̂E1
t

i

}
i

be PVM characterizing von Neumann measurements for
the system S and the environment E1 respectively. We may use the PVM in (5.12) acting on S for
generating a partition (5.12) as the PVM associated with the von Neumann measurement being made
on S at time t. The post-measurement joint state of the system and environment are expected to be
in agreement with respect to the value of i, we force this as follows;

1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)
(5.18)
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where N (t) is a normalization constant. The latter is an SBS state which approximates ρ̂t at time t.

To get the SBS state, constructed via the algorithm described in the previous paragraph, closest
(in the trace distance sense) to ρ̂t for a fixed t > 0 we must solve the optimization problem

min
PVM

1
2

∥∥∥∥ρ̂t − 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥
1

(5.19)

where the minimum is taken over all PVM acting on the environmental degree of freedom. In general,
it will not be possible to solve these sorts of optimization problems (5.19). We will only be interested
in the asymptotic behavior of (5.19) with respect to t, hence we seek only to bound (5.19) by some-
thing resembling (4.65) in the previous chapter for the analogous problem in the discrete variables case.

Making strides towards an analog of (4.65) for the CV case we bound (5.19) as follows.

min
PVM

1
2

∥∥∥∥ρ̂t − 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥
1

= (5.20)

min
PVM

1
2

∥∥∥∥∑
i

∑
j

P̂∆i,t
ρ̂tP̂∆j,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥
1

(5.21)

which in turn may be bounded by two terms as follows.

min
PVM

1
2

∥∥∥∥∑
i

∑
j

P̂∆i,t
ρ̂tP̂∆j,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥
1

≤ (5.22)

min
PVM

(
1
2

∥∥∥∥∑
i

P̂∆i,t
ρ̂tP̂∆i,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥
1
+ (5.23)

1
2

∥∥∥∥∑
i

∑
j;j ̸=i

P̂∆i,t
ρ̂tP̂∆j,t

∥∥∥∥
1

)
= (5.24)

min
PVM

(
1
2

∥∥∥∥∑
i

P̂∆i,t
ρ̂tP̂∆i,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥
1

)
+ (5.25)

1
2

∥∥∥∥∑
i

∑
j;j ̸=i

P̂∆i,t
ρ̂tP̂∆j,t

∥∥∥∥
1

(5.26)

The approach we present here for tackling the SBSCV problem is that of studying the bound above
consisting of the terms (5.25) and (5.26). In what follows we will dedicate a separate section to each
of the terms (5.25) and (5.26) respectively. We will refer to the term (5.25) as the diagonal term and
to the term (5.26) as the off-diagonal term (aka the coherence term). Before getting into the fact of
the matter, we will briefly comment on the main mathematical difficulty arising in SBSCV theory;
motivating the partition (5.12). We will then present useful bounds that will aid in studying the
diagonal and off-diagonal terms (5.25) and (5.26) respectively.
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5.1 Problem With Definition 4.1.2 When Introducing Contin-
uous Variables

With this section, we hope to shed light on our reasoning behind the new definition for SBS pre-
sented in Definition 5.0.1.

There are dire hurdles that arise when attempting to define an SBS state for the case where
continuous variables are involved. To appreciate them, let us examine the state (5.11) in such a case.
The system’s state is now a density operator ρ̂S0 in an infinite-dimensional Hilbert space; for our
purposes, it will be convenient to take this space to be L2(R). Analogously to (4.36), we define the
interaction of the system with the environment as

Hint = γX̂ ⊗ B̂ (5.27)

for simplicity; where X̂ is the position operator. Being a trace-class operator, ρ̂S0 can be represented
as an integral operator, whose kernel we denote by K(x, y). The expansion analogous to (4.40) is the
following:

ρ̂t =
∫ ∫

K(x, y)γ2
x,y(t)|x⟩⟨y| ⊗ ρ̂E

1
t

x,ydxdy (5.28)

where as expected ρ̂E
1
t

x,y := e−ixγB̂tρ̂E
1
0eiyγB̂t and γ2

x,y(t) := Tr
{

ρ̂E
2
t

x,y

}
. Unlike the state (4.40), the

state (5.28) does not have a clear decomposition into diagonal and off-diagonal terms using the spectral
decomposition of the operator X̂ in terms of generalized eigenvectors

∣∣x〉, which we have employed
to expand Ut

(
Et
(
ρ̂S0

)
⊗ ρ̂E0

)
=
(
e−itγX̂⊗B̂)(Et(ρ̂S0

)
⊗ ρ̂E0

)(
e−itγX̂⊗B̂); herein we have dropped the

subscripts and superscripts indicating that we have traced over one environmental degree of freedom
per the notional conventions prescribed in equations (5.6) through (5.10). We shall forgo usage of
such superscripts and subscripts from now on unless the values of ME and NE are relevant.

In the finite-dimensional case, we could clearly distinguish between diagonal and off-diagonal
entries in order to deduce an SBS structure approximating the state in question (see the work leading
to 4.65 ). In the continuous variable case, this approach breaks down since the diagonal term is now

ρ̂t =
∫
K(x, x)|x⟩⟨x| ⊗ ρ̂Et

x dx (5.29)

which is not a trace class operator, since it is unitarily equivalent to a tensor product of a multipli-
cation operator and a trace class operator—thus it cannot represent a quantum state. Being able
to separate between diagonal and off-diagonal terms in Chapter 4 was a key step in our estimation
process (what led to 4.65), to proceed similarly for the CV case we must partition the state (5.28)by
applying the partition (5.12) to the system’s degree of freedom.

Another difficulty in moving into the continuous variable case is an increase in complexity when
dealing with trace norms; starting from the fact that

∥∥∣∣x〉〈y∣∣∥∥1 is undefined for generalized states
∣∣x〉

and
∣∣y〉.
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5.2 Partitioning (5.11)

To formally introduce our approach for the study of SBS in the CV case we will first discuss the
phenomenon of decoherence and its ramifications to our model (5.11). In this case, decoherence arises
from the quantum map Et in:

ρ̂t =
(
e−itγX̂⊗B̂)(Et(ρ̂S0

)
⊗ ρ̂E0

)(
eitγX̂⊗B̂) (5.30)

For the remainder of this chapter we will be assuming that the states ρ̂S0 and ρ̂E0 are pure. As
we have done in (5.28), we use the representation

ρ̂S0 =
∫ ∫

K(x, y)|x⟩⟨y|dxdy (5.31)

using the generalized eigenvectors of the position operator X̂. Using representation (5.31), and refering
back to (5.9), the effect of Et on ρ̂S0 is hence

Et
(
ρ̂S0

)
=
∫ ∫

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣dxdy (5.32)

where Γ(t, x, y) is a kernel yielding non-unitary dynamics obtained via partial tracing as seen in (5.10).
Substituting this into (5.30) we obtain

ρ̂t =
∫ ∫

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣⊗ ρ̂Et

x,ydxdy (5.33)

where we remind the reader that ρ̂Et
x,y := e−itγxB̂ρ̂E0eitγyB̂.

For fixed t > 0 we adopt a partition characterized by a PVM P̂∆i,t
:= χ∆i,t

(
X̂
)

acting on the
degree of freedom pertaining to the system, as was done in (5.12), in order to express (5.33) as follows.

ρ̂t =
∑
i

∑
j

P̂∆i,t

(∫ ∫
K(x, y)Γ(t, x, y)

∣∣x〉〈y∣∣⊗ ρ̂Et
x,ydxdy

)
P̂∆j,t

= (5.34)

∑
i

∑
j

(∫ ∫
K(x, y)Γ(t, x, y)P̂∆i,t

∣∣x〉〈y∣∣P̂∆j,t
⊗ ρ̂Et

x,ydxdy
)

= (5.35)

∑
i

∑
j

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂Et
x,ydxdy (5.36)

Once again, we call the elements of the sum (5.36) for which i ̸= j the "off-diagonal terms" and the
terms for which i = j "the diagonal terms".
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5.3 Estimating the "Off-diagonal Terms" (5.26)

Given a multipartite of the form prescribed in (5.36), the off-diagonal terms, i.e. i ̸= j, may be
estimated as follows. Focusing on (5.36) with i ̸= j, some elementary work leads to∥∥∥∥∑

i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣⊗ ρ̂Et

x,ydxdy

∥∥∥∥
1

= (5.37)

∥∥∥∥e−itγX̂⊗B̂

((∑
i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣dxdy)⊗ ρ̂E0

)
eitγX̂⊗B̂

∥∥∥∥
1

= (5.38)

∥∥∥∥
(∑

i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣dxdy)⊗ ρ̂E0

∥∥∥∥
1

= (5.39)

∥∥∥∥∑
i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣dxdy∥∥∥∥

1
≤ (5.40)

∑
i

∑
j;j ̸=i

∥∥∥∥∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣dxdy∥∥∥∥

1
= (5.41)

∑
i

∑
j;j ̸=i

∥∥∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥∥
1

(5.42)

where again P̂∆i,t
:= χ∆i,t

(
X̂
)

=
∫

∆i,t

∣∣x〉〈x∣∣dx, i.e. the spectral projector of X̂ projecting onto the
subspace corresponding to the set ∆i,t. The trace norms

∥∥P̂∆i
Et
(
ρ̂S0

)
P̂∆j

∥∥
1 are in general quite

difficult to estimate. We present below two approaches; one is an adaptation of the work in [46] and
the other is an application of the main theorem of [50].

5.3.1 Bounds of the Kupsch Kind [46]

One approach to estimating the trace norms in the inequality (5.43) below invokes some ideas from
Kupsch’s seminal paper on decoherence [46], where it is proven that

∥P∆i
Et
(
ρ̂S0

)
P∆j

∥ ≤ C(1 + δ2ψ(t))−γ (5.43)

for intervals ∆j and ∆i separated by a distance δ > 0. Where ψ(t) ≥ 0 is a function that diverges for
t → ∞, γ an exponent which can be large, and C is some constant; unfortunately there is no proof
of this claim present in [46], the author is therefore led to believe that there is perhaps something to
do with the Paley -Wiener theorem [3] working in the background, or maybe some basic Harmonic
Analysis. Given that we will not be using (5.43), but a variant rather, we will not worry too much
about deriving (5.43) ourselves.

We now present the variant to the bound found in the appendix of [46]. Again, we will focus on
the case where X̂ is the position operator.
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Theorem 5.3.1 (Adapting Kupsch’s Bounds [46])

Let us fix t > 0 and let ρ̂t be some density operator which may be represented, using the
generalized eigenvectors of the position operator X̂, as

ρ̂t =
∫ ∫

Γ(t, x, y)K(x, y)
∣∣x〉〈y∣∣dxdy (5.44)

where Γ(t, x, y) and P̂∆i,t
are defined here as they were in (5.12); K(x, y) is the kernel of ρ̂0.

Then,

∥P̂∆i,t
ρ̂tP̂∆j,t

∥1 ≤ sup
(x,y)∈∆i,t×∆j,t

(
2|Γ(t, x, y)| + |∆j,t||∂yΓ(t, x, y)|

)
(5.45)

when ∣∣∣∆i,t × ∆j,t ∩ supp
{

Γ(t, x, y)K(x, y)
}∣∣∣ ̸= 0 (5.46)

otherwise
∥P̂∆i,t

ρ̂tP̂∆j,t
∥1 = 0 (5.47)

Proof. CASE 1)

If ∆i,t × ∆j,t is such that∣∣∣∆i,t × ∆j,t ∩ supp
{

Γ(t, x, y)K(x, y)
}∣∣∣ = 0 (5.48)

then ∥∥∥∥P̂∆i,t
ρ̂tP̂∆j,t

∥∥∥∥
1

=
∥∥∥∥∫

∆i,t

∫
∆j,t

Γ(t, x, y)K(x, y)
∣∣x〉〈y∣∣dxdy∥∥∥∥

1
= (5.49)

∥∥∥∥ ∫
∆i,t

∫
∆j,t

0
∣∣x〉〈y∣∣dxdy∥∥∥∥

1
= 0 (5.50)

CASE 2)
Now we assume that ∣∣∣∆i,t × ∆j,t ∩ supp

{
Γ(t, x, y)K(x, y)

}∣∣∣ ̸= 0 (5.51)

Let us begin by considering the operator

T̂t(y) :=
∫

∆i,t

Γ(t, x, y)
∣∣x〉〈x∣∣dx. (5.52)

Where i is fixed. T̂t(y) is a differentiable family of operators, with respect to y, with the operator
norm estimate ∥∥T̂t(y)

∥∥ ≤ sup
x∈∆i,t

|Γ(t, x, y)| (5.53)
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The latter follows from the calculation below.

∥∥T̂t(y)
∥∥2 = sup

∥|ψ⟩∥=1

∥∥T̂t(y)
∣∣ψ〉∥∥2 = (5.54)

sup
∥|ψ⟩∥=1

∫
∆i,t

∫
∆i,t

Γ(t, x′, y)∗Γ(t, x, y)
〈
ψ
∣∣x′〉〈x′∣∣x⟩

〈
x
∣∣ψ〉dx′dx = (5.55)

sup
∥|ψ⟩∥=1

∫
∆i,t

|Γ(t, x, y)|2
〈
ψ
∣∣x〉〈x∣∣ψ〉dx ≤ (5.56)

sup
x∈∆i,t

|Γ(t, x, y)|2 sup
∥|ψ⟩∥=1

∫
∆i,t

|ψ(x)|2dx ≤ sup
x∈∆i,t

|Γ(t, x, y)|2 (5.57)

In a similar way, we may bound the operator T̂′
t(y) :=

∫
∆i,t

Γ′(t, x, y)
∣∣x〉〈x∣∣dx. Where Γ′(t, x, y) :=

∂yΓ(t, x, y). i.e. ∥∥T̂′
t(y)

∥∥ ≤ sup
x∈∆i,t

|Γ
′
(t, x, y)| (5.58)

Furthermore, define Ĵt(y) := T̂t(y)ρ̂0 and Ĵ′

t(y) := T̂′

t(y)ρ̂0. These operators also have uniform
estimates; using the estimates computed above, and the inequality ∥ÂĈ∥1 ≤ ∥Â∥∥Ĉ∥1 one may
easily show that ∥∥Ĵt(y)

∥∥
1 ≤ sup

x∈∆i,t

|Γ(t, x, y)|
∥∥ρ̂0

∥∥
1 = sup

x∈∆i,t

|Γ(t, x, y)| (5.59)

and that ∥∥Ĵ
′

t(y)
∥∥

1 ≤ sup
x∈∆i,t

|Γ
′
(t, x, y)|

∥∥ρ̂0
∥∥

1 = sup
x∈∆i,t

|Γ
′
(t, x, y)|. (5.60)

We now clarify the relationship between the operator T̂′
t(y) and the weak derivative ∂y

〈
ψ
∣∣T̂t(y)

∣∣ϕ〉.
∂y
〈
ψ
∣∣T̂t(y)

∣∣ϕ〉 = ∂y

∫
∆i,t

Γ(t, x, y)
〈
ψ
∣∣x〉〈x∣∣ϕ〉dx (5.61)

Assuming that Γ(t, x, y) is C1(∆i,t) with respect to y we may now swap the order of the integral and
the derivative.

∂y

∫
∆i,t

Γ(t, x, y)
〈
ψ
∣∣x〉〈x∣∣ϕ〉dx =

∫
∆i,t

∂yΓ(t, x, y)
〈
ψ
∣∣x〉〈x∣∣ϕ〉dx = (5.62)

∫
∆i,t

Γ
′
(t, x, y)

〈
ψ
∣∣x〉〈x∣∣ϕ〉dx =

〈
ψ
∣∣( ∫

∆i,t

Γ
′
(t, x, y)

∣∣x〉〈x∣∣dx)∣∣ϕ〉 =
〈
ψ
∣∣T̂ ′

t(y)
∣∣ϕ〉 (5.63)

We therefore have
∂y
〈
ψ
∣∣T̂t(y)

∣∣ϕ〉 =
〈
ψ
∣∣T̂′

t(y)
∣∣ϕ〉 (5.64)

Now, for all intervals ∆j,t, we have
∫

∆j,t
Ĵt(y)

∣∣y〉〈y∣∣dy = P̂∆i,t
ρ̂tP̂∆j,t

. Let us define ∆j,t :=
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[aj(t), bj(t)]. We will show that the following identity holds.∫
∆j,t

Ĵt(y)
∣∣y〉〈y∣∣dy = Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj(t))P̂(−∞,aj(t)] −

∫
∆j,t

Ĵ′
t(y)P̂(−∞,y]dy. (5.65)

In what follows, we will use the purity of ρ̂0 and write it in bra-ket notation, i.e. let
∣∣ξ0
〉〈
ξ0
∣∣ := ρ̂0.

Now, For arbitrary
∣∣ψ〉 and

∣∣ϕ〉
〈
ψ
∣∣ ∫

∆j,t

Ĵt(y)
∣∣y〉〈y∣∣dy∣∣ϕ〉 =

∫
∆j,t

〈
ψ
∣∣Ĵt(y)

∣∣y〉〈y∣∣ϕ〉dy. (5.66)

By the definition of Ĵt(y) one has

〈
ψ
∣∣Ĵt(y)

∣∣y〉 =
〈
ψ
∣∣T̂t(y)ρ̂0

∣∣y〉 =
〈
ψ
∣∣T̂t(y)

∣∣ξ0
〉〈
ξ0
∣∣y〉. (5.67)

Picking up from (5.66).
(5.66) =

∫
∆j,t

〈
ψ
∣∣T̂t(y)

∣∣ξ0
〉〈
ξ0
∣∣y〉〈y∣∣ϕ〉dy = (5.68)

[〈
ψ|T̂t(y)

∣∣ξ0
〉〈
ξ0
∣∣( ∫ y

−∞
dy′∣∣y′〉〈y′∣∣)∣∣ϕ〉]∣∣∣∣∣

bj(t)

aj(t)

−
∫

∆j,t

(∫ y

−∞

〈
ξ0
∣∣y′〉〈y′∣∣ϕ〉dy′

)
d

(〈
ψ
∣∣T̂t(y)

∣∣ξ0
〉)

=

(5.69)[〈
ψ
∣∣T̂t(y)

∣∣ξ0
〉〈
ξ0
∣∣P(−∞,y]

∣∣ϕ〉]∣∣∣∣∣
bj(t)

aj(t)

−
∫

∆j,t

(∫ y

−∞

〈
ξ0
∣∣y′〉〈y′∣∣ϕ〉dy′

)(〈
ψ
∣∣T̂t(y)

∣∣ξ0
〉)′

dy = (5.70)

[〈
ψ
∣∣T̂t(y)

∣∣ξ0
〉〈
ξ0
∣∣P̂(−∞,y]

∣∣ϕ〉]∣∣∣∣∣
bj(t)

aj(t)

−
∫

∆j,t

(〈
ψ
∣∣T̂t(y)

∣∣ξ0
〉)′〈

ξ0
∣∣P̂(−∞,y]

∣∣ϕ〉dy = (5.71)

〈
ψ
∣∣[T̂t(y)

∣∣ξ0
〉〈
ξ0
∣∣P̂(−∞,y]

]∣∣∣∣∣
bj(t)

aj(t)

∣∣ϕ〉−
〈
ψ
∣∣(∫

∆j,t

T̂′
t(y)

∣∣ξ0
〉〈
ξ0
∣∣P̂(−∞,y]dy

)∣∣ϕ〉 = (5.72)

〈
ψ
∣∣(Ĵt(y)P̂(−∞,y]

∣∣∣∣∣
bj(t)

aj(t)

−
∫

∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

)∣∣ϕ〉 = (5.73)

〈
ψ
∣∣(Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj(t))P̂(−∞,aj(t)] −

∫
∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

)∣∣ϕ〉 (5.74)

and so∫
∆j,t

Ĵt(y)
∣∣y〉〈y∣∣dy = Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj(t))P̂(−∞,aj(t)] −

∫
∆j,t

Ĵ′
t(y)P̂(−∞,y]dy. (5.75)

Consequently ∥∥P̂∆i.t
ρ̂tP̂∆j,t

∥∥
1 =

∥∥∥∥∫
∆j,t

Ĵt(y)|y⟩⟨y|dy
∥∥∥∥

1
= (5.76)
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∥∥∥∥Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj(t))P̂(−∞,aj(t)] −
∫

∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

∥∥∥∥
1

≤ (5.77)

∥∥Ĵt(bj(t))P̂(−∞,bj(t)]
∥∥

1 +
∥∥Ĵt(aj(t))P̂(−∞,aj(t)]

∥∥
1 +

∥∥∥∥ ∫
∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

∥∥∥∥
1

≤ (5.78)

∥∥Ĵt(bj(t))
∥∥

1∥P̂(−∞,bj(t)]
∥∥+

∥∥Ĵt(aj(t))
∥∥

1

∥∥P̂(−∞,aj(t)]
∥∥+

∫
∆j,t

∥∥Ĵt(y)′P̂(−∞,y]
∥∥

1dy ≤ (5.79)

∥∥Ĵt(bj(t))
∥∥

1 +
∥∥Ĵt(aj(t))

∥∥
1 +

∫
∆j,t

∥∥Ĵ′
t(y)

∥∥
1

∥∥P̂(−∞,y]
∥∥dy = (5.80)

∥∥Ĵt(bj(t))
∥∥

1 +
∥∥Ĵt(aj(t))

∥∥
1 +

∫
∆j,t

∥∥Ĵ′
t(y)

∥∥
1dy ≤ (5.81)

∥∥Ĵt(bj(t))
∥∥

1 +
∥∥Ĵt(aj(t))

∥∥
1 + |∆j,t| sup

y∈∆j,t

∥∥Ĵ′
t(y)

∥∥
1dy ≤ (5.82)

sup
x∈∆i,t

|Γ(t, x, bj(t))| + sup
x∈∆i,t

|Γ(t, x, aj(t))| + |∆j,t| sup
x∈∆i,t

y∈∆j,t

|∂yΓ(t, x, y)| ≤ (5.83)

sup
(x,y)∈

∆i,t×∆j,t

(
2|Γ(t, x, y)| + |∆j,tΓ

′
(t, x, y)|

)
(5.84)

5.3.2 Another Way to Estimate the Off-diagonal Terms (5.26)

In the previous section, the kernel term Γ(t, x, y) characterizing the non-unitarity evolution of the
density operator in the hypothesis of Theorem 5.3.1 was treated in rather general terms. However,
if more is known about the kernel Γ(t, x, y), then one may employ yet another technique for the
estimation of

∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥
1. Namely, we will utilize the following theorem from [50] in order

to bound the non-diagonal terms for the case where it is known how to express P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

as
a product of two trace class operators acting in some measurable L2(M,µ

)
. We will focus on the case

where M = R and µ is just the Lebesgue measure.
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Theorem 5.3.2 (Theorem From Stolz et al [50])

Let A(x, z) and B(z, x) ∈ L2(R) ∀ z ∈ R and∫
∥A(·, z)∥L2(R)∥B(z, ·)∥L2(R)dz < ∞. (5.85)

Then there is a trace class operator ÂB̂ acting in L2(R) with kernel

AB(x, y) =
∫
A(x, z)B(z, y)dz (5.86)

such that ∥∥ÂB̂
∥∥

1 ≤
∫

∥A(·, z)∥L2(R)∥B(z, ·)∥L2(R)dz (5.87)

The kernel operators Â and B̂ also act in L2(R) and have respective kernels A(x, y) and
B(x, y).

The first step toward the employment of Theorem 5.3.2 to the estimation of the terms (5.42) is
rewriting P̂∆i,t

Et
(
ρ̂S0

)
P̂∆j,t

as a product of of two operators. Let us fix t, and note that the main
challenge is the kernel Γ(t, x, y). Expanding, we see that

P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

=
∫ ∫

Γ(t, x, y)ψS0(x)ψ∗
S0

(y)χ∆i,t
(x)χ∆j,t

(y)
∣∣x〉〈y∣∣dxdy. (5.88)

Where ψ∗
S0

(x)ψS0(y) = K(x, y) is the kernel of ρ̂S0 . If the kernel Γ(t, x, y) were to have a decomposi-
tion of the form

Γ(t, x, y) =
∫
ϕ(t, x, z)η(t, y, z)dz (5.89)

with ∫
|η(t, x, z)ϕ(t, y, z)|2dz < ∞ (5.90)

for all (t, x, y) ∈ R2, then Theorem 5.3.2 would be applicable for any t. Assuming (5.90) we have

∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥
1 ≤ (5.91)

∫ ([∫
|ϕ(t, x, z)ψS0(x)χ∆i,t

(x)|2dx
][ ∫

|η(t, y, z)ψS0(y)χ∆j,t
(y)|2dy

])
dz = (5.92)

∫ ∫ ([∫
|ϕ(t, x, z)η(t, y, z)|2dz

]
|ψS0(x)χ∆i,t

(x)|2|ψS0(y)χ∆j,t
(y)|2

)
dxdy ≤ (5.93)

[
max

(x,y)∈R2

∫
|ϕ(t, x, z)η(t, y, z)|2dz

] ∫ ∫ (
|ψS0(x)χ∆i,t

(x)|2|ψS0(y)χ∆j,t
(y)|2

)
dxdy = (5.94)

[
max

(x,y)R2

∫
|ϕ(t, x, z)η(t, y, z)|2dz

](∫
∆i,t

|ψS0(x)|2dx
)(∫

∆j,t

|ψS0(y)|2dy
)

≤ (5.95)
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max
(x,y)∈R2

∫
|ϕ(t, x, z)η(t, y, z)|2dz < ∞ (5.96)

The Hypothesis of Theorem 5.3.2 is therefore satisfied, for all t > 0, and we conclude that

∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥
1 ≤

∫
∥Ai,t(·, z)∥L2(R)∥Bj,t(z, ·)∥L2(R)dz (5.97)

with Ai,t(x, z) := ϕ(t, x, z)ψS0(x)χ∆i,t
(x) and Bj,t(z, x) := η(t, x, z)ψ∗

S0
(x)χ∆j,t

(x).

We now formalize the above as a corollary to Theorem 5.3.2.

Corollary 5.3.1 (Corollary to Theorem 5.3.2)

If the kernel Γ(t, x, y) has a decomposition

Γ(t, x, y) =
∫
ϕ(t, x, z)η(t, y, z)dz (5.98)

with ∫
|η(t, x, z)ϕ(t, y, z)|2dz < ∞ (5.99)

for all (t, x, y) ∈ [0,∞) × R2, then

∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥
1 ≤

∫
∥Ai,t(·, z)∥L2(R)∥Bj,t(z, ·)∥L2(R)dz (5.100)

with Ai,t(x, z) := ϕ(t, x, z)ψS0(x)χ∆i,t
(x) and Bj,t(z, x) := η(t, x, z)ψ∗

S0
(x)χ∆j,t

(x).

Proof. The proof is in the preceding discussion concluding with equation (5.97).

Example

For the case where the kernel Γ(t, x, y) = e−tnα(x−y)2 , n > 0, t > 0, we may express such a function
as a convolution of Gaussians. Namely,

Γ(t, x, y) = e−tnα(x−y)2
= 2
√
tnα

π

∫
e−2tnα(x−z)2

e−2tnα(y−z)2
dz. (5.101)

In this case the ϕ and η from (5.90) are just

ϕ(t, x, z) =

√
2
√
tnα

π
e−2tnα(x−z)2

(5.102)

and

η(t, y, z) =

√
2
√
tnα

π
e−2tnα(y−z)2

. (5.103)
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Notice that here∫
|ϕ(t, x, z)η(t, y, z)|2dz = 4tn

π

∫
e−4tnα(x−z)2

e−4tnα(y−z)2
dz = 4tnα

π

√
π

2 3
2
√
tnα

e−2tnα(x−y)2
=

(5.104)√
2tnα√
π

e−2tnα(x−y)2
< ∞ (5.105)

for all t > 0 and (x, y) ∈ R2. With such a ϕ and η, we can bound the corresponding inequality (5.97)
as follows. ∥∥P̂∆i,t

Et
(
ρ̂S0

)
P̂∆j,t

∥∥
1 ≤ (5.106)∫ ∫ ([∫

|ϕ(t, x, z)η(t, y, z)|2dz
]
|ψS0(x)χ∆i,t

(x)|2|ψS0(y)χ∆j,t
(y)|2

)
dxdy = (5.107)

∫ ∫ (√
2tnα√
π

e−2tnα(x−y)2
|ψS0(x)χ∆i,t

(x)|2|ψS0(y)χ∆j,t
(y)|2

)
dxdy = (5.108)

∫
∆i,t

∫
∆j,t

(√
2tnα√
π

e−2tnα(x−y)2
|ψS0(x)|2|ψS0(y)|2

)
dxdy (5.109)

The Kernel
√

2tnα√
π
e−2tnα(x−y)2 is a delta sequence with respect to t. Therefore, as t becomes arbi-

trarily large, the support of the integrand of (5.109) narrows along the diagonal elements x ̸= y of
∆i,t × ∆j,t. Hence, whenever x ∈ ∆i,t, y ∈ ∆j,t, and (∆i,t ∩ ∆j,t = ∅), (5.109) vanishes as t → ∞.

Gaussian states are popular enough that the latter discussion merits emphasis as yet another
corollary of Theorem 5.3.2.

Corollary 5.3.2 (Theorem (5.3.2) with Gaussian assumptions for Γ(t, x, y) )

Fix t > 0. Now let

Γ(t, x, y) = e−tnα(x−y)2
= 2
√
tnα

π

∫
e−2tnα(x−z)2

e−2tnα(y−z)2
dz (5.110)

where n > 0, and assume that ∆i,t ∩ ∆j,t = ∅, then

1)
∥∥P̂∆i,t

Et
(
ρ̂S0

)
P̂∆j,t

∥∥
1 ≤

∫
∆i,t

∫
∆j,t

(√
2tnα√
π

e−2tnα(x−y)2
|ψS0(x)|2|ψS0(y)|2

)
dxdy

(5.111)
S

2) lim
t→∞

∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥
1 = 0 (5.112)

Proof. The proof is in the preceding discussion concluding with equation (5.109).
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5.4 Estimating the Diagonal Terms (5.25)

We have hitherto developed the tools necessary to estimate the trace norm of the off-diagonal terms
(5.26) arising from estimates of the optimization problem (5.20). To conclude our estimation of the
optimization problem (5.20) we now study the diagonal terms (5.25). i.e.

min
PVM

∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥
1

(5.113)

The minimization is taken over all PVMs resolving the identity operator of the space associated with
the environmental degrees of freedom. Recall that

∑
i

∑
j

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆j,t

⊗ I
)

is just another
way of writing ρ̂t (see 5.12). The use of the PVM

{
P̂∆i,t

}
i

in the first term of the difference in (5.113)
is just technical. However, the usage of the same PVM on the second term in the difference of (5.113)
does imply measurement of the von Neumann type performed on the system; i.e in a local sense in
the sense Definition 2.2.3. When estimating the off-diagonal terms (5.26), we were only tasked with
studying its asymptotic behavior with respect to t since the families of PVM acting on the system’s
degree of freedom, P̂∆i,t

were assumed to be predetermined. For the case of the diagonal terms
(5.25), we are now tasked with studying the limit as t goes to infinity of a term which depends on a
minimization optimization, namely (5.113). This is now a more challenging problem since a way to
estimate the optimal PVM acting on the environmental degrees of freedom in (5.113) for each value
of t > 0 is needed to understand its asymptotic behavior.

One might have already noted that the map
∑
i P̂∆i,t

⊗ P̂Et
i

(
...
)
P̂∆i,t

⊗ P̂Et
i is unlike the related

measurements of von Neumann type seen in Definition 2.2.3 since they do not preserve the trace.
Both are indeed completely positive maps, but the latter map turns out to reduce the trace in general,
i.e.

Tr

{∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)}
≤ Tr{ρ̂t} = 1. (5.114)

Indeed, the PVM {P̂∆i
⊗ P̂Et

i }i by itself does not describe a measurement for the product of the
system’s and environment’s Hilbert spaces because it does not resolve the identity operator acting
over the entire Hilbert space HS ⊗ HE but rather the identity of a subspace of HS ⊗ HE ; hence the
need for the normalization constant N (t) in (5.113). The associated PVM, which preserves trace,
and resolves the identity of HS ⊗ HE , is indeed the family of projectors

{
P̂∆i,t

⊗ P̂Et
j

}
i,j

.This set
includes outcomes pertaining to the case where the environment E is measured to be in the state
labeled by the index j which differs from the outcome measured by the system S i ̸= j. Hence, we
exclude the i ̸= j terms when constructing the approximating SBS state (5.18).

Let us now estimate (5.113). We begin by rewriting the operator
∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

in
the form described by the following Lemma:
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Lemma 5.4.1 (Rewriting (5.113))

∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

=
∑
i

p̄i(t)Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
(5.115)

where
ρ̂Si,t

=
∫
R

∫
R
Ki,t(x, y)|x⟩⟨y|dxdy (5.116)

Ki,t(x, y) :=
1∆i,t

(x)ψ(x)√
p̄i(t)

1∆i,t
(y)ψ∗(y)√
p̄i(t)

(5.117)

p̄i(t) :=
∫

∆i,t

K(x, x)dx, (5.118)

ψ(x)ψ∗(y) = K(x, y) (5.119)

and recalling that
Ut(Â) := e−itγX̂⊗B̂ÂeitγX̂⊗B̂ (5.120)

Proof.

∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

=
∑
i

∫
∆i,t

∫
∆i,t

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣⊗ ρ̂Et

x,ydxdy = (5.121)

∑
i

p̄i(t)
∫

∆i,t

∫
∆i,t

K(x, y)
p̄i(t)

Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂Et
x,ydxdy = (5.122)

where
p̄i(t) :=

∫
∆i,t

K(x, x)dx. (5.123)

That is,
(5.122) =

∑
i

p̄i(t)
∫
R

∫
R
Ki,t(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂Et

x,ydxdy (5.124)

recalling that K(x, y) = ψ(x)ψ∗(y) owing to the purity of ρ̂S0 , we define

Ki,t(x, y) := 1∆i,t
(x)1∆i,t

(y)K(x, y)
p̄i(t)

=
1∆i,t

(x)ψ(x)√
p̄i(t)

1∆i,t
(y)ψ∗(y)√
p̄i(t)

. (5.125)

Furthermore, let us define

ψSi,t(x) :=
1∆i,t

(x)ψ(x)√
p̄i(t)

(5.126)

and write
Ki,t(x, y) = ψSi,t

(x)ψ∗
Si,t

(y)
(
Kernel of

∣∣ψSi,t

〉〈
ψSi,t

∣∣ ) (5.127)

Finally,
(5.124) =

∑
i

p̄i(t)Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
(5.128)
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where we define

ρ̂Si,t
:=

P̂∆i,t
ρ̂S0P̂∆i,t

Tr
{

P̂∆i,t
ρ̂S0P̂∆i,t

} =
∫
R

∫
R
Ki,t(x, y)

∣∣x〉〈y∣∣dxdy (5.129)

and utilize the definition of Ut presented in (5.6) with g = γ and NE = 1, i.e.

Ut(Â) := e−itγX̂⊗B̂ÂeitγX̂⊗B̂. (5.130)

Employing Lemma 5.4.1 we may now write∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)
=
∑
i

p̄i(t)
(
I ⊗ P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)(
I ⊗ P̂Et

i

)
(5.131)

Finally, normalizing the operator (dividing by its trace) (5.131) we obtain an approximate SBSCV
state to ρ̂t.

ρ̂SBSCV,t := 1
N (t)

∑
i

p̄i(t)
(
I ⊗ P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)(
I ⊗ P̂Et

i

)
. (5.132)

Just as we did for the case of discrete variables in the previous chapter (see equations (4.58) through
(4.65)) we will be estimating

∥∥ρ̂t−N (t)ρ̂SBSCV,t
∥∥

1 first, and then, using Lemma 4.4.1 we shall bound∥∥ρ̂t − ρ̂SBSCV,t
∥∥

1.
The representation (5.132) makes transparent the structure of the dynamics being imposed on the

total initial states ρ̂S0 ⊗ ρ̂E0 by making explicit all of the quantum maps generating the dynamics,
i.e.

Λt ◦ Ut ◦
(
Et ⊗ IE

)(
ρ̂S0 ⊗ ρ̂E0

)
(5.133)

where IE is the identity map on the environmental degrees of freedom and

Λt(Â) :=
∑
i

1
N (t)

∑
i

p̄i(t)
(
I ⊗ P̂Et

i

)
Â
(
I ⊗ P̂Et

i

)
. (5.134)

It is clear that the quantum maps Λt and Et⊗IE commute due to their respective non-trivial influences
taking effect only in complementary subspaces. What is more interesting and less obvious is the
commutativity between Et ⊗ IE and the unitary map Ut. Proving this is the content of the following
lemma (Lemma 5.4.2); a lemma that we shall need for the proof of the main result of this chapter.

Lemma 5.4.2 (Commutativity of Et ⊗ IE and Ut)

Ut ◦
(
Et ⊗ IE

)(
ρ̂S0 ⊗ ρ̂E0

)
=
(
Et ⊗ IE

)
◦ Ut

(
ρ̂S0 ⊗ ρ̂E0

)
(5.135)

Proof. We remind the reader that we are always working within the framework discussed in the
introduction to this chapter (see equations (5.3) through 5.11)). With this in mind, define Vt

(
Â
)

:=
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e−itγ′X̂⊗IE⊗B̂′(Â)eitγ′X̂⊗IE⊗B̂′ . Then,

Ut ◦
(
Et ⊗ IE

)(
ρ̂S0 ⊗ ρ̂E0

)
= Ut

(
TrE′

{
Vt
(

ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E
′
0
)})

= (5.136)

(
Ut ⊗ IE′

)
◦
(

ISE ⊗ TrE′

)
◦ Vt

(
ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E

′
0
)

(5.137)

Where ISE is the identity quantum map acting in the combined degrees of freedom of the system
S and the environment E. By virtue of the fact that the quantum maps ISE ⊗ TrE′ and Ut ⊗ IE′

produce non-trivial effects only on complementary subspaces, these two commute. Hence

(5.137) =
(

ISE ⊗ TrE′

)
◦
(
Ut ⊗ IE′

)
◦ Vt

(
ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E

′
0
)

(5.138)

Furthermore, it is easy to see that the generators of the unitary maps Ut ⊗ IE′ and Vt commute.
Namely X̂ ⊗ B̂ ⊗ IE′ and X̂ ⊗ IE ⊗ B̂′. We therefore have the following.

(5.138) =
(

ISE ⊗ TrE′

)
◦ Vt ◦

(
Ut ⊗ IE′

)(
ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E

′
0
)

= (5.139)

(
ISE ⊗ TrE′

)
◦ Vt

(
Ut

(
ρ̂S0 ⊗ ρ̂E0

)
⊗ ρ̂E

′
0
)

= (5.140)

TrE′

{
Vt
(
Ut

(
ρ̂S0 ⊗ ρ̂E0

)
⊗ ρ̂E

′
0
)}

=
(
Et ⊗ IE

)(
Ut

(
ρ̂S0 ⊗ ρ̂E0

))
= (5.141)

(
Et ⊗ IE

)
◦ Ut

(
ρ̂S0 ⊗ ρ̂E0

)
(5.142)

Note that this proof is independent of the states ρ̂S0 and ρ̂E0 .

The following corollary follows from Lemma 5.4.2.

Corollary 5.4.1 (A Et independent estimate)∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥
1

≤ (5.143)

∑
i

p̄i(t)
∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥
1

(5.144)

Proof. ∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥
1

= (5.145)

∥∥∥∥∑
i

p̄i(t)
(

Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
−
(
I ⊗ P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)(
I ⊗ P̂Et

i

))∥∥∥∥
1

≤ (5.146)
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∑
i

p̄i

∥∥∥∥Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
−
(
I ⊗ P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)(
I ⊗ P̂Et

i

)∥∥∥∥
1

≤ (5.147)

∑
i

p̄i

∥∥∥∥Et
(

Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

))∥∥∥∥
1

≤ (5.148)

∑
i

p̄i

∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥
1

(5.149)

where we have used Theorem 5.4.2 going from (5.147) to (5.148), and in going from (5.148) to (5.149)
we used the contractivity property of quantum maps (see Theorem 2.3.1).

Without the effects of the quantum map Et, the term Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

in (5.144) is now pure;
recall that ρ̂E0 was assumed pure and ρ̂Si,t

=
∣∣ψSi,t

〉〈
ψSi,t

∣∣ (5.127), where
∣∣ψSi

〉
is a pure state. To

accentuate the latter we write ρ̂Si,t
=
∣∣ψSi,t

〉〈
ψSi,t

∣∣ in place of ρ̂Si,t
, and we use the definition of the

map Ut to express it as a left and right product of unitary operators.

Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

= Ût

(∣∣ψSi,t

〉〈
ψSi,t

∣∣⊗
∣∣ψE0

〉〈
ψE0

∣∣)Û†
t = (5.150)

(
Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))(
Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))†

(5.151)

where of course Ût := e−itγX̂⊗B̂. It therefore follows that(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(

I ⊗ P̂Et
i

)
= (5.152)

(
I ⊗ P̂Et

i Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))(
I ⊗ P̂Et

i Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))†

(5.153)

We are now ready to present the main theorem of this section.

Theorem 5.4.1 (Estimating the Diagonal Terms (5.25))

min
P V M

1
2

∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
1

N (t)

∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥
1

≤ (5.154)

min
P V M

4

√∑
i

p̄i(t)
(

1 − Tr

{
P̂Et

i Λt,i

(∣∣ψE0

〉〈
ψE0

∣∣)P̂Et
i

})
(5.155)

Here we have defined Λi,t as follows.

Λi,t

(
ρ̂
)

:=
∫

|ψSi,t
(x)|2

(
e−itγxB̂ρ̂eitγxB̂

)
dx (5.156)

Proof. First, we will compute the following traces. Recall that Ki,t(x, y) := ψSi,t(x)ψ∗
Si,t

(y)

Ni(t) := Tr

{(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(

I ⊗ P̂Et
i

)}
= (5.157)
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〈
ψSi,t

∣∣⊗
〈
ψE0

∣∣Û†
t

(
I ⊗ P̂Et

i

)
Ût

∣∣ψSi,t

〉
⊗
∣∣ψE0

〉
= (5.158)(∫

ψ∗
Si,t

(y)
〈
y
∣∣dy ⊗

〈
ψE0

∣∣)Û†
t

(
I ⊗ P̂Et

i

)
Ût

(∫
ψSi,t

(x)
∣∣x〉dx⊗

∣∣ψE0

〉)
= (5.159)

∫ ∫
ψ∗
Si,t

(x)ψSi,t
(y)
〈
y
∣∣x〉(〈ψE0

∣∣eitγyB̂P̂Et
i e−itγxB̂∣∣ψE0

〉)
dxdy = (5.160)∫ ∣∣ψSi,t

(x)
∣∣2(〈ψE0

∣∣eitγyB̂P̂Et
i e−itγxB̂∣∣ψE0

〉)
dx = (5.161)∫ ∣∣ψSi,t(x)

∣∣2(〈ψE0

∣∣eitγyB̂P̂Et
i P̂Et

i e−itγxB̂∣∣ψE0

〉)
dx = (5.162)∫

|ψSi,t
(x)|2

(
Tr
{

P̂Et
i e−itγxB̂∣∣ψE0

〉〈
ψE0

∣∣eitγxB̂P̂Et
i

})
dx = (5.163)

Tr

{
P̂Et
i

(∫
|ψSi,t(x)|2

(
e−itγxB̂∣∣ψE0

〉〈
ψE0

∣∣eitγxB̂
)
dx

)
P̂Et
i

}
= (5.164)

Tr

{
P̂Et
i Λi,t

(∣∣ψE0

〉〈
ψE0

∣∣)P̂Et
i

}
(5.165)

Here the quantum map Λi,t is defined as follows.

Λi,t
(
ρ̂
)

:=
∫

|ψSi,t(x)|2
(
e−itγxB̂ρ̂eitγxB̂

)
dx (5.166)

Now let us compute the following trace distance via an employment of Lemma 2.3.1.∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

− 1
Ni(t)

(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥
1

= (5.167)

∥∥∥∥(Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))(
Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))†

−
( I ⊗ P̂Et

i Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉)√
Ni(t)

)( I ⊗ P̂Et
i Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉)√
Ni(t)

)†∥∥∥∥
1

=

(5.168)

2

√√√√√1 −

∣∣∣∣∣
〈
ψSi,t

∣∣⊗
〈
ψE0

∣∣Û†
t

(
I ⊗ P̂Et

i

)
Ût

∣∣ψSi,t

〉
⊗
∣∣ψE0

〉√
Ni(t)

∣∣∣∣∣
2

= (5.169)

2

√
1 −

∣∣∣∣ Ni(t)√
Ni(t)

∣∣∣∣2 = 2
√

1 − Ni(t) (5.170)

Recapitulating, we have
Ni(t) = Tr

{
P̂Et
i Λi,t

(∣∣ψE0

〉〈
ψE0

∣∣)P̂Et
i

}
(5.171)

and ∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

− 1
Ni(t)

(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥
1

= 2
√

1 − Ni(t) (5.172)

Using Corollary (5.4.1), our only task in proving Theorem 5.4.1 will be to estimate (5.144). Using
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(5.171) and (5.172) we get the following.

1
2
∑
i

p̄i(t)
∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥
1

≤ (5.173)

1
2
∑
i

p̄i(t)
[∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

− 1
Ni(t)

(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥
1
+ (5.174)

1
2

∥∥∥∥ 1
Ni(t)

(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)
−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥
1

]
= (5.175)

1
2

∑
i

p̄i(t)
[∥∥∥Ut

(
ρ̂Si,t

⊗ρ̂E0
)

−
1

Ni(t)
(
I⊗P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ρ̂E0
)(

I⊗P̂Et
i

)∥∥∥
1
+
∣∣ 1
Ni(t)

−1
∣∣∥∥∥(I⊗P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ρ̂E0
)(

I⊗P̂Et
i

)∥∥∥
1

]
=

(5.176)
1
2
∑
i

p̄i(t)
[∥∥∥∥Ut

(
ρ̂Si,t

⊗ρ̂E0
)
− 1

Ni(t)
(
I⊗P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ρ̂E0
)(
I⊗P̂Et

i

)∥∥∥∥
1
+
∣∣ 1
Ni(t)

−1
∣∣Ni(t)

]
= (5.177)

∑
i

p̄i(t)
[

2
√

1 − Ni(t) + 1 − Ni(t)
]

≤
∑
i

p̄i(t)
[

2
√

1 − Ni(t)
]

= (5.178)

2
∑
i

p̄i(t)
√

1 − Ni(t) ≤ 2
√∑

i

p̄i(t)
(
1 − Ni(t)

)
= (5.179)

2
√∑

i

p̄i(t)
(

1 − Tr

{
P̂Et
i Λi,t

(∣∣ψE0

〉〈
ψE0

∣∣)P̂Et
i

})
(5.180)

Here we have employed Jensen’s inequality for concave functions in (5.179).
By virtue of Corollary 5.4.1 we therefore have

1
2

∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥
1

≤ (5.181)

4
√∑

i

p̄i(t)
(

1 − Tr

{
P̂Et
i Λi,t

(∣∣ψE0

〉〈
ψE0

∣∣)P̂Et
i

})
(5.182)

Finally, a simple application of Lemma 4.4.1 leads to

1
2

∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥
1

≤ (5.183)

4
√∑

i

p̄i(t)
(

1 − Tr

{
P̂Et
i Λi,t

(∣∣ψE0

〉〈
ψE0

∣∣)P̂Et
i

})
(5.184)

Taking the minimum over all PVM acting on the environmental degrees of freedom on both sides of
inequality (5.183) (5.184) we get the result we set out to prove.

Theorem 5.4.1 may be easily generalized to support the setting where NE environments are present
and ME environments have been traced out as previously mentioned in the discussion spanning
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equations (5.3) through (5.11). We present this without proof since the steps are analogous to all
of the steps involved in proving Theorem 5.4.1.

Theorem 5.4.2 (Estimating the Diagonal Terms (5.25) for NE Environments)

min
P V M

1
2

∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
1

N (t)

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥
1

≤ (5.185)

min
P V M

2

√√√√∑
i

p̄i(t)
(

1 − Tr

{ NE⊗
k=1

P̂Ek
t

i Λi,t

( NE⊗
k=1

∣∣ψEk
0

〉〈
ψEk

0

∣∣) NE⊗
k=1

P̂Ek
t

i

})
(5.186)

Here we have defined Λi,t as follows.

Λi,t

(
ρ̂
)

:=
∫

|ψSi,t
(x)|2

(
e

−itx
∑NE

k=1
gkB̂k ρ̂e

itx
∑NE

k=1
gkB̂k

)
dx (5.187)

All of the B̂k act on their respective Hilbert space.

A little thought convinces one that if we were to constrain ourselves to the case where all of the∣∣ψEk
0

〉〈
ψEk

0

∣∣ are identical and all of the gkB̂k are identical, then Theorem (5.4.1) would take the
following simpler form.

Corollary 5.4.2 (Estimating the Diagonal Terms (5.25) for NE identical Envi-
ronments with identical B̂k and identical gk)

min
P V M

1
2

∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
1

N (t)

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥
1

≤ (5.188)

min
P V M

2

√∑
i

p̄i(t)
(

1 −
∫

|ψSi,t
(x)|2

〈
ψEt (x)

∣∣P̂Et
i

∣∣ψEt (x)
〉NE

dx

)
(5.189)

where ∣∣ψEt (x)
〉

:= e−itxgB̂
∣∣ψE0

〉
(5.190)

Notice that the object in the square root of (5.189) is the general case of the bound encountered
in (3.188) where NE = 1, the ambient Hilbert space was L2(R) and the equivalent in (3.188) of the
kernel K(x, x) was compactly supported; this in turn lead to a finite set of partitions ∆i,t and a specific
PVM

{
P̂Et
i

}
i

which grew more optimal (in the sense of fully solving the respective QSD problem) as
t grew large.

Theorems 5.4.1 and 5.4.2, and Corollary 5.4.2 are tools that may aid in the estimation of the
diagonal term (5.25). The drawback to these bounds is that they require one to find an approximately
optimal PVM acting on the environmental degrees of freedom, this is in contrast with the discrete
variables, where we devised a PVM independent bound ( 4.2.2 ). It is important to note that the
density operators Λt,i

(
ρ̂E0

)
are not pure, we may therefore not apply Theorem 4.2.2 in this case.

In order for 4.2.2 to be applicable, the Λi,t
(
ρ̂E0

)
must be approximately pure. To see this let us

consider the term in the square root of (5.186). Now, define ρ̂Et
xi

:= e−itγxiB̂ρ̂E0eitγxiB̂, where
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xi :=
∫
x|ψSi,t

(x)|2dx. We have the following.

1 − Tr
{

P̂Et
i Λi,t

(
ρ̂E0

)
P̂Et
i

}
≤ (5.191)∥∥∥∥Λi,t

(
ρ̂E0

)
− P̂Et

i Λi,t
(
ρ̂E0

)
P̂Et
i

∥∥∥∥
1

= (5.192)∥∥∥∥Λi,t
(
ρ̂E0

)
− ρ̂Et

xi
+ ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i + P̂Et

i ρ̂Et
xi

P̂Et
i − P̂Et

i Λi,t
(
ρ̂E0

)
P̂Et
i

∥∥∥∥
1

≤ (5.193)∥∥∥∥Λi,t
(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥
1

+
∥∥∥∥P̂Et

i ρ̂Et
xi

P̂Et
i − P̂Et

i Λi,t
(
ρ̂E0

)
P̂Et
i

∥∥∥∥
1

≤ (5.194)∥∥∥∥Λi,t
(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥
1

+
∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥
1

= (5.195)

2
∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥
1

= (5.196)

With this result, we now bound (5.186).

2 min
PVM

√∑
i

p̄i(t)
(

1 − Tr
{

P̂Et
i Λi,t

(
ρ̂E0

)
P̂Et
i

})
≤ (5.197)

2 min
PVM

√∑
i

p̄i(t)
(

2
∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥
1

)
≤ (5.198)

2
√

2
∑
i

p̄i(t)
∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥
1

+ 2 min
PVM

√∑
i

p̄i(t)
∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥
1

(5.199)

We will write the latter result as a lemma.

Lemma 5.4.3 (Diagonal terms of the SBS problem for continuous variables, fur-
ther estimates)

min
PVM

1
2

∥∥∥∥∑
i

(
P̂∆i,t

⊗I
)

ρ̂t

(
P̂∆i,t

⊗I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗P̂Et
i

)∥∥∥∥
1

≤ (5.200)

4
√

2
∑
i

p̄i(t)
∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥
1

+ 4 min
PVM

√∑
i

p̄i(t)
∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥
1

(5.201)

This can be easily extended to the case where we have more than one environmental degree of
freedom. In such a case, Lemma 5.4.3 becomes the following.
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Corollary 5.4.3 (Diagonal terms for continuous variables NE macro-
environment case; further estimates)

min
PVM

1
2

∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗
NE⊗
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P̂Ek
t

i

)
ρ̂t

(
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⊗
NE⊗
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P̂Ek
t

i

)∥∥∥∥
1

≤

(5.202)

4

√√√√2
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∥∥∥∥∥Λi,t
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k=1
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0

)
−
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Ek

t
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t

i ρ̂
Ek

t
xi P̂Ek

t
i
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1

(5.203)

Using Corollary 5.4.3 and Lemma 4.1, we obtain the following useful corollary.

Corollary 5.4.4 (Further estimates)

1
2 min
PVM

∥∥∥∥∑
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(5.205)

Proof. First note that∥∥∥∥∥Λi,t

(
NE⊗
k=1

ρ̂E
k
0

)
−

NE⊗
k=1

ρ̂E
k
t

xi

∥∥∥∥∥
1

=
∥∥∥∥∥
∫

|ψSi,t
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( NE⊗
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)
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k
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1

= (5.206)

∥∥∥∥∥
∫

|ψSi,t
(x)|2

( NE⊗
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ρ̂E
k
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NE⊗
k=1

ρ̂E
k
t

xi

)
dx

∥∥∥∥∥
1

≤ (5.207)

∫
|ψSi,t

(x)|2
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( NE⊗
k=1

ρ̂E
k
t

x −
NE⊗
k=1

ρ̂E
k
t

xi

)∥∥∥∥∥
1

dx. (5.208)

Using the latter, the proof follows directly from Lemma 4.1 and Theorem 5.4.3 by noting that

∥∥ρ̂E
k
t

x

∥∥
1 = 1 (5.209)

for all t, k and x.

If the first term of (5.205) is small then we may benefit from the use of Theorem 4.2.2 in estimating
the second term of (5.205).
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5.4.1 How General Can X̂ Be?

The operator X̂ may be taken to be a more general self-adjoint operator; so long as it has purely
continuous spectrum, and in particular a non-empty Rajchman subspace, then all of the above work
of this chapter has an analog with some modifications. To see this we write X̂ in its spectral decom-
position form, using the spectral theorem, i.e.

X̂ =
∫
σ(X̂)

λdÊλ (5.210)

where dÊλ is a PVM. Now, notice that the operator (5.30) may be expressed as

(
e−itγX̂⊗B̂)(Et(ρ̂S0

)
⊗ ρ̂E0

)(
eitγX̂⊗B̂) = (5.211)

∫ ∫
dÊλ

dλ
Et
(
ρ̂S0

)dÊλ′

dλ′ ⊗ e−itγλB̂ρ̂E0eitγλ
′B̂dλdλ′. (5.212)

Using this operator and developing the respective appropriate partition, as we did for the position
operator in (5.36), we may attain analogs to all of the theorems in the previous subsections of this
chapter. This includes Theorem 5.4.2. Care must be taken in making sense of the terms dÊλ

dλ however.
For the case where X̂ is simply assumed to be a multiplication operator with a purely absolutely
continuous spectrum, the treatment becomes virtually identical to that of the case where X̂ is a
position operator which was the focus of this chapter. In future work, we might push toward further
generalities.
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Concluding Remarks and Future
Work

In this work the central object of study has been

TrENE +1,ENE +2,...,EN

{
e−itX̂⊗

∑N

k=1
gkB̂k

(
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

)
eitX̂⊗

∑N

k=1
gkB̂k

}
. (5.213)

In Chapter 5 we have made significant strides in defining what the associated SBS state of (5.213)
should be (SBSCV), and developing techniques for estimating the proximity between (5.213) and
its associated SBS state. We have done the analogous work in Chapter 4 for the case of discrete
variables; albeit a formulation of SBS for discrete variables predates this dissertation. However, there
is much left to be desired as the form of (5.213) is rather restrictive. In future work, we would like to
consider the cases where the quantum-measurement limit and the von Neumann interaction operator
assumptions are relaxed. i.e. we would like to consider the case where Ĥtot is not approximately
Ĥint and the interaction term Ĥint does not have the tensor product form (von Neumann interaction)
X̂ ⊗

∑N
k=1 gkB̂k. It would be interesting to find out for which families of Ĥtot one is able to prove

that there exist time domains for which the dynamics push the state

ρ̂t := TrENE +1,ENE +2,...,EN

{
e−itĤtot

(
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

)
eitĤtot

}
. (5.214)

into an SBS/SBSCV regime. Of course in this case estimating the respective SBS proximity will be
much more daunting since we will in general not be able to execute the decompositions (5.4) (4.40)
which were key in estimating the SBS and SBSCV problems for the von Neuman type interactions
case in Chapters 4 and 5. If progress could be made in estimating 5.214 with a more general Ĥtot,
then a next step of interest would be to relax the separable initial state condition. i.e. rather than
considering the case where ρ̂S0 ⊗

⊗N
k=1 ρ̂E

k
0 as our total initial state, we could consider an arbitrary

ρ̂0 ∈ S
(
HS ⊗

⊗NE

k=1 HEk

)
as the total initial state. It would be very interesting to prove that SBS

states arise for a broader family of dynamics and initial states.

As a parting remark, we heuristically discuss what we have learned from our SBS studies for (5.214).
We have learned that even simple purely decoherent dynamics ( no dissipation/ no exchange of kinetic
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energy) is enough to render classical objectivity (Definition 4.1.1) from the quantum. Macroscopic
systems such as human beings are perpetually scattering smaller particles such as air molecules,
and photons; scattering events that may be modeled by recoilless-scattering-models such as those
afforded by von Neumann-type Hamiltonians (1.98). It would seem that classicality at the macroscale
arises from the quantum due to the gargantuan quantity of interactions classical objects have with
their environments. It would therefore seem that as classical beings we can never find ourselves in a
superposition whilst living. These are indeed questions for physicists to grapple with and beyond the
scope of this dissertation but thought-provoking and not fully out of place. Rather than concluding
this dissertation with a thousand words we shall conclude it with a picture. We present in the
following page an artistic interpretation of quantum to classical transitions as characterized by SBS
theory (Figure 5.1).
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Figure 5.1: An artistic interpretation of quantum to classical transitions as characterized by SBS theory.
The author of this thesis described SBS theory to artist Timothy Martinez (@timbosculpt) and this beautiful
artistic interpretation resulted. The author omits his own interpretation of this gorgeous work, leaving the
reader to insert their own.
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Appendix A: Notation

Herein we present some of the notational conventions of the Thesis in order to aid the reader.

• Â:= operator.

• ρ̂:= Density operator (Definition 1.3.2).

• ρ̂dg,t:= See (4.50)

• ρ̂SBS,t:= See (4.51)

• ρ̂P SBS,t := N ρ̂SBS,t

• Tr
{

Â
}

:= Trace of some trace class operator
Â. See Definition 1.3.3.

• TrEk

{
Â
}

:= Partial trace of the kth environ-
mental degrees of freedom. See Definition 1.4.1.

• S
(
H
)
:= Space of density operators acting in

H .

• H := Hilbert Space.

• HS := Hilbert Space of the system.

• HEk := Hilbert Space of kth Environment.

• Ĥ:= Hamiltonian.

• Ĥint:= Interaction Hamiltonian.

•
∣∣ψ〉 := Vector in some Hilbert Space.

• Ût := Unitary operator.

• Ĥ0 := −
∑

k
1

2mk
∂2

xk

• Spec
{

Â
}

:= Spectrum of an operator Â. See
Definition 1.3.1.

• E
(
ρ̂
)
: Quantum map. See Definition 2.1.1.

• M̂ := Krauss operators 1.75.

•
∥∥Â
∥∥

1
:= Tr

{√
Â†Â

}
• F

(
ρ̂, σ̂

)
:=
∥∥√ρ̂

√
σ̂
∥∥2

1

• POVM and PVM:= Projective operator valued
measure and projector valued measure respec-
tively. See 2.2.3 a discussion.

• pE := Shorthand for

min
P OV M

pE

{
{pi, ρ̂i}

N
i=1, {M̂l

}N

l=1

}
:=

minP OV M

{
1 −

∑N

i=1 piTr
{

M̂iρ̂iM̂
†
i

}}
.

• QSD:= Quantum state discrimination. See the
intro to Chapter 3.

• Dk
s,t:= See (4.69).

2
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Appendix B: Gap in Corollary 1 of
[40]

Let
{

Êl

}
l

be a POVM. The operators Êl act over some unspecified Hilbert space. Indeed,
∑
l Êl = I,

∥Êl∥ ≤ 1 and Êl are positive operators that may be written as Êl = M̂†
lM̂l where M̂l are bounded

operators. Now, let ρ̂ be a density operator acting over the same Hilbert space as the POVM
{

Êl

}
l
.

A question arises regarding the positive semidefiniteness of the operator ρ̂ − M̂lρ̂M̂†
l .

Claim 5.4.1 (Non positivity of a particular operator)

ρ̂ − M̂lρ̂M̂†
l is not positive semidefinite in general

Proof. Counter example.

Consider the 2 dimensional case where ρ̂ =
(

1 − δ 0
0 δ

)
(0 ≤ δ ≤ 1) and we have a POVM

characterized by the operator M̂0 = a

(
0.5 0.5
0.5 0.5

)
(a < 1) which is a scaled projector. The PVOM in

question is {
M̂†

0M̂0, I − M̂†
0M̂0

}
. (5.215)

Let us take a look at the operator
ρ̂ − M̂0ρ̂M̂0 (5.216)

Expanding things out this looks as follows; in matrix notation.

ρ̂ − M̂0ρ̂M̂0 =
(

1 − δ 0
0 δ

)
− a2

4

(
1 1
1 1

)
=
(

1 − δ − a2

4 −a2

4
−a2

4 δ − a2

4

)
. (5.217)

For this operator to be positive semidefinite we require that
〈
ϕ
∣∣{ρ̂ − M̂0ρ̂M̂0

}∣∣ϕ〉 ≥ 0 hold for
all
∣∣ϕ〉 in the Hilbert space in question. Let us use the unit vector ẽ2 = (0, 1)t. In this case

〈
ẽ
∣∣{ρ̂ − M̂0ρ̂M̂0

}∣∣ẽ〉 = δ − a2

4 (5.218)

But notice that if δ < a2

4 , which is a viable possibility, then we do not have positive definiteness
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for ρ̂ − M̂0ρ̂M̂0.

That is it for the counter-example. Notice that in the case where a = 1, M̂0 is a projector, and
even then we do not have positive definiteness for ρ̂ − M̂0ρ̂M̂0 in general since this breaks down for
δ < 1

4 .

Now, in the paper [40] the authors provide a proof for equation (5) on page 2 of said paper. This
proof involves the computation of a trace distance of the form

∥∥ρ̂ − P̂ρ̂P̂∥1 (where P̂ is a projector)
; see page (1) of the appendix of the same paper and look at the sentence preceding equation (4) of
page one of this appendix. There the authors implicitly argue that

∥∥ρ̂ − P̂ρ̂P̂∥1 = Tr
{

ρ̂(I − P̂)
}

in
general. This, however, is only true if ρ̂ − P̂ρ̂P̂ ≥ 0, and this in turn is true only when P̂ commutes
with ρ̂. It looks like, tacitly, they are assuming that the PVMS, amongst other assumptions, have the
special property that ( now I use their notation) the P̂i projector commute with the ρ̂i terms of the
mixture

∑
i piρ̂i where P̂i is an element of a POVM used to discriminate the mixture

∑
i piρ̂. This

assumption however need not in general be true and the bound by Knill and Barnum [27] does not
assume commutativity for their result that bounds the trace

Tr
{∑

i

piρ̂ −
∑
i

M̂iρ̂M̂†
i

}
(5.219)

to hold when minimizing over appropriate POVM,
{

M̂i

}
i
, schemes and neither do they assume

that we discriminate with projectors, their result uses the objective function which minimizes over all
POVM. This means that the assumption that P̂i commutes with ρ̂i makes the minimization calculated
in [40] an upper bound to the one proven by Knill and Barnum [27]. Unfortunately starting from
∥ρ̂i − P̂iρ̂iP̂i∥1 and bounding such an object by fidelities is significantly harder.
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